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Mathematical Modeling of Sinoatrial Node Dynamics at the Subcellular, Cellular, and

Tissue Scales

Abstract

Cardiac pacing is an important area of scientific inquiry, and provides a rich opportunity

for mathematical study due to the dynamic interplay of robustness and flexibility required

for healthy function. The sinoatrial node (SAN) is key to understanding pacing, since the

spontaneous periodic action potentials in the SAN pace the action potentials – and thus

mechanical contraction – in the cardiac muscle tissue. However, several components of SAN

function remain unclear; in the present work, we address three questions related to the

rhythmicity and pacing activity of the SAN at multiple scales. First, we use model reduc-

tion and dynamical systems analysis to elucidate the rate-limiting steps in the subcellular

kinetics of changes in SAN cell firing frequency resulting from sympathetic nervous system

activity. This sheds light on the key biochemical factors involved in the potential arrhythmo-

genicity of sympathetic surges, and generates implications for pharmaceutical interventions

for pathologies involving cardiac sympathetic dysregulation. Next, we apply the theory of

weakly coupled oscillators to analyze the role of voltage-dependent gap junction gating on

phase-locking in a differential equation model of SAN cell electrophysiology. This approach

explores the potential effects of the distinct type of gap junctions in the SAN on synchrony.

Finally, we use a combination of bifurcation analysis, spectral analysis, and simulations to in-

vestigate the role of size and curvature of the SAN or an ischemic region on its ability to drive

action potentials in a neighboring excitable region of tissue. This elucidates how emergent

properties of the physiology and geometry of a spontaneously active region impact threshold

behavior for periodic propagating waves. Taken together, our results provide insight into

the theoretical underpinnings for several complex processes involved in cardiac pacing, and

inspiration for future computational and experimental work to apply the predictions made

by our models.
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CHAPTER 1

Introduction

As both an essential component of overall health and a complex biophysical system, car-

diac physiology is an important area of scientific inquiry. Cardiac pacemaking provides an

especially compelling subject for mathematical study due to the dynamic interplay of robust-

ness and flexibility required for healthy function within an organism. The heart must beat

consistently throughout the entire lifespan, maintaining blood flow throughout the body; at

the same time, the frequency of contraction and volume of flow must respond adaptively to

physical and situational needs, as well as to a variety of input from the autonomic nervous

system.

Cardiac pacing begins in a small region in the right upper atrium known as the sinoatrial

node (SAN). Cells in the SAN fire spontaneous, rhythmic action potentials, and receive in-

put from the sympathetic and parasympathetic nervous system (SNS and PNS) that speed

up or slow down their frequency. Action potentials in the SAN initiate from a “lead pace-

maker site,” which can shift depending on the frequency of firing, and propagate outward

via cell-to-cell electrical coupling in a characteristic direction known as the conduction path-

way [10, 46]. These action potential waves then spread into the surrounding atrial tissue,

pass through the atrioventricular (AV) node, and travel into the ventricles. In cardiac muscle

cells, the triggered action potentials are coupled to mechanical contraction. The coordinated

contraction of the ventricle muscle constitutes the heartbeat. In this work we apply mathe-

matical modeling to provide a theoretical understanding of several components of the cardiac

pacing process, with an emphasis on the function of the SAN. We focus on three problems

in cardiac pacing at the subcellular, cellular, and tissue scales within the SAN and in its

immediate vicinity.
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In humans and other mammals, the physiology of cardiac pacing is modulated by the

autonomic nervous system (ANS). The ANS – which consists of the sympathetic nervous

system (SNS) and parasympathetic nervous system (PNS) – sends signals to the heart that

result in changes to the frequency of the heartbeat and the contractility of the cardiac

muscle. This signaling is accomplished by, in the PNS, nerves that project directly through

the vagus nerve into the heart and form synapses directly onto cardiac cells. The SNS forms

a multi-layered network consisting of neurons that project from the brainstem to ganglia just

outside the spinal cord, neurons that conduct signals within and between the paravertebral

ganglia, and postganglionic neurons that project to the heart and form synapses onto cardiac

cells [29, 36]. It is estimated that each cardiac cell, including those in the SAN as well as

in the atrial and ventricular tissue, receives synaptic input from efferent neurons [23, 75].

The ANS uses this synaptic signaling, with several points of feedback in the SNS and PNS

networks, to influence cardiac output in response to the situational needs of the organism,

such as increased heart rate in the presence of a perceived threat.

Dysregulated SNS activity, including elevated abrupt-onset sympathetic activity in heart

failure, is known to be associated with exacerbation of prior heart failure and sudden cardiac

death [12,49]. The cardiac cellular response to SNS activity results in increased production of

the second messenger cyclic AMP (cAMP), which leads to changes to the electrophysiological

properties of the cell. Therefore, cAMP is likely involved in the arrhythmogenicity of SNS

signaling in pathological settings. However, the mechanisms governing the kinetics of cAMP

concentration changes in cardiac cells are not well understood. In Chapter 2, we apply model

reduction and analysis to investigate the rate-limiting steps modulating the transduction of

stimuli from the SNS into electrophysiological changes via increased cAMP concentration in

a cardiac cell. This work was published in Journal of Theoretical Biology in 2021 [45].

In the SAN, numerous cell types are present including intrinsically oscillatory SAN cells

with heterogeneous electrophysiological properties; atrial or atrial-like cells; and fibrob-

lasts [41,51]. However, cells in the SAN must achieve synchrony in order to successfully pace
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the cardiac muscle tissue. Current conduction between cells in the SAN and throughout the

heart relies on current transfer through electrical coupling between individual cells. Such

cell-to-cell electrical coupling is primarily accomplished by gap junctions, which are plaques

formed at the interface between adjacent cell membranes containing multi-protein channels

through which ions can travel betwee adjacent cells. Several distinct types of gap junctions

are expressed differentially across regions of the heart; in particular, the SAN predominantly

contains connexin 45 (Cx45) gap junctions, whereas connexin 43 (Cx43) gap junctions are

much more common throughout the atria and ventricles [15, 18]. Although the functional

role of these differences in expression of gap junction type is not known, one prominent

factor distinguishing the function of gap junction types is the dependence of conductance on

junctional voltage, i.e., the difference in membrane potential between the two coupled cells.

Voltage-clamp studies show that the conductance across gap junctions is maximized when

the membrane potentials of the two adjacent cells are similar; as the difference between mem-

brane potentials increases, the conductance across the gap junction decreases. Conduction

through Cx45 gap junctions displays a steeper dependence on junctional voltage than does

conduction across Cx43 gap junctions, and a narrower window of junctional voltage in which

the conductance is close to its maximal value. In Chapter 3, we examine the potential role

of voltage-dependent coupling between cells in the SAN by applying the theory of weakly

coupled oscillators to SAN cells.

Action potentials originate in and around the central area of the crescent-shaped SAN,

but the precise location of first activation shifts along the superior-inferior axis of the node

as the frequency of oscillations changes [3,8]. These action potentials propagate outward in

a particular direction, passing into the surrounding atrial tissue through a limited number

of “exit sites” [21, 44, 58]. This restricted pathway may be due to anatomical barriers, a

lack of coupling between SAN cells and atrial tissue, or emergent properties of the physi-

ology and geometry of the SAN [46]. Outside the SAN, ischemia or infarction can cause a
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region of tissue in the myocardium to become spontaneously active and to produce electri-

cal waves [27, 61], which constitute dangerous and often fatal arrhythmias. Conventional

understanding suggests that electrical waves propagate more rapidly from stronger “source”

regions, including regions of higher negative curvature due to their higher area and therefore

greater quantity of current as compared with regions of positive curvature [66]. However,

recent work using both in vitro experiments and a combination of mathematical analysis and

computational simulation contradicts this argument, suggesting that positive curvature may

increase the propensity for a spontaneously active electrical source region to produce peri-

odic waves [69]. In Chapter 4, we use dynamical systems approaches including bifurcation

theory as well as PDE linearization and spectral analysis to study the effects of the shape

and curvature of the SAN, or of an ischemic region, on the propagation of action potentials

into the surrounding tissue.

Our work provides insight into the theoretical underpinnings of several components of

the cardiac pacemaking process. The results of Chapter 2 identify the key regulatory com-

ponents of the process by which the SNS accelerates heart rate and generate predictions

for cardiac disease and treatment. The results of Chapter 3 suggest that the impact of

voltage-dependent gating on cell-to-cell synchrony does not justify the presence of distinct

populations of gap junctions in different regions of the cardiac conduction pathway. Instead,

the distinct expression of gap junctions in different regions of the heart might allow for

differential modulation of gap junctions by the downstream products of SNS signaling, as

suggested in [39]. Finally, the results in Chapter 4 demonstrate that in the SAN, or any

spontaneously active region of tissue, the electrical excitability and the size and shape of the

region interact in a complex manner to determine the (in)stability of stationary solutions

and of periodic, propagating waves. Taken together, our results provide inspiration for future

computational and experimental work to apply the predictions made by our models to more

realistic settings.
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CHAPTER 2

Dynamics of Adrenergic Signaling in Cardiac Myocytes and

Implications for Pharmacological Treatment

This work was published in Journal of Theoretical Biology in 2021 [45].

Abstract

Dense innervation of the heart by the sympathetic nervous system (SNS) allows cardiac

output to respond appropriately to the needs of the body under varying conditions, but

occasionally the abrupt onset of SNS activity can trigger cardiac arrhythmias. Sympathetic

activity leads to the release of norepinephrine (NE) onto cardiomyocytes, activating β1-

adrenergic receptors (β1-ARs) and leading to the production of the second messenger cyclic

AMP (cAMP). Upon sudden activation of β1-ARs in experiments, intracellular cAMP can

transiently rise to a high concentration before converging to a steady state level. Although

changes to cellular cAMP concentration are important in modulating the overall cardiovas-

cular response to sympathetic tone, the underlying mechanisms of the cAMP transients and

the parameters that control their magnitude are unclear.

We reduce a detailed computational model of the β1-adrenergic signaling cascade to a

system of two differential equations by eliminating extraneous variables and applying quasi-

steady state approximation. The structure of the reduced model reveals that the large

cAMP transients associated with abrupt β1-AR activation are generated by the interplay

of production/degradation of cAMP and desensitization/resensitization of β1-ARs. The

reduced model is used to predict how the dynamics of intracellular cAMP depend on the

concentrations of norepinephrine (NE), phosphodiesterases 3 and 4 (PDE3,4), G-protein
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coupled receptor kinase 2 (GRK2), and β1-AR, in healthy conditions and a simple model of

early stages of heart failure.

The key findings of the study are as follows: 1) Applying a reduced model of the dynamics

of cardiac sympathetic signaling we show that the concentration of two variables, cAMP and

non-desensitized β1-AR, capture the overall dynamics of sympathetic signaling; 2) The key

factors influencing cAMP production are AC activity and PDE3,4 activity, while those that

directly impact β1-AR phosphorylation are GRK2 and PKA1. Thus, disease states that affect

sympathetic control of the heart can be thoroughly assessed by studying AC activity, PDE3,4,

GRK2 and PKA activity, as these factors directly impact cAMP production/degradation

and β1-AR (de)phosphorylation and are therefore predicted to comprise the most effective

pharmaceutical targets in diseases affecting cardiac β1-adrenergic signaling.

2.0.1. Key Words. sympathetic nervous system; cyclic AMP; heart failure; β-blockers;

mathematical model

2.1. Introduction

Activity of the sympathetic nervous system (SNS) modulates overall cardiovascular func-

tion: in healthy mammals, heart rate and contractile force adapt dynamically in response to

sympathetic activity. However, dysregulation of the SNS has been linked to proarrhythmia

and heart failure [22,42,57,70]. Enhanced sympathetic activity is associated with exacer-

bation of prior heart failure and sudden cardiac death [12,49]. The changes resulting from

the onset of SNS activity require cardiomyocytes to increase their production of the second

messenger cyclic AMP (cAMP), which suggests that cAMP is an important component of

the cardiac response to the SNS in physiological and pathological conditions. It is therefore

critical to understand the dynamical mechanisms of adrenergic signaling in cardiac myocytes

and how this signaling modulates cellular cAMP levels in health and disease.
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Cardiac modulation by the SNS occurs via the release of epinephrine and norepinephrine

(NE) from sympathetic neurons directly onto cardiac myocytes expressing β-adrenergic re-

ceptors (β-ARs). The heart is densely innervated, such that individual cardiac cells in both

the conduction pathway and the myocardium receive synaptic input from the SNS [23,75].

Cardiac cells predominantly express β1-adrenergic receptors (β1-ARs), which bind synaptic

NE or adrenergic agonist and induce changes to electrophysiology and contractility. The

activation of β1-ARs modulates an intracellular signaling pathway that, when activated,

stimulates adenylyl cyclases 5 and 6 to increase production of cyclic AMP (cAMP), releas-

ing the catalytic subunit of protein kinase A (PKA) to phosphorylate cellular targets (Figure

1). Activated PKA phosphorylates delayed rectifier potassium channels IKr and IKs, L-type

calcium channels, and troponin I, as well as both ligand-bound and unbound β1-ARs, which

are desensitized by phosphorylation. Ligand-bound receptors are also selectively phospho-

rylated and desensitized by G-protein coupled receptor kinase 2 (GRK2).

Although the mechanisms for sympathetic-induced arrhythmias are not fully understood,

it is known that the effects of SNS activity are largely mediated through changes at a cellular

scale, which occur via changes to the concentration of cAMP in individual myocytes. In single

cells, β1-adrenergic activity can increase the propensity for arrhythmias by various means:

enhancement of late sodium current or L-type calcium current increases the risk of EADs

[14,74], especially in long-QT syndrome (LQTS) in cells with IKs block or IKr/IKs mismatch

[4, 63, 73], while increased calcium influx increases the propensity for DADs [5]. At the

scale of the organ, the cellular changes induced by β1-AR activation can be arrhythmogenic

in various pathologies including LQTS, myocardial infarction, atrial fibrillation, and heart

failure [24], and it is estimated that roughly 50% of sudden deaths in heart failure are due

to electrophysiological aberrations [16, 33]. Since each of these arrhythmogenic processes

depends on the excess production of cAMP via β-adrenergic signaling, it is essential to

decipher the key dynamical mechanisms of the kinetics of the β1-AR biochemical cascade.
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Figure 2.1. The release of norepinephrine activates a biochemical signaling
pathway that results in intracellular physiological changes in a cardiac my-
ocyte. The adrenergic agonist binds to a β1-AR, which activates the Gsα sub-
unit to stimulate adenylyl cyclases V and VI (AC), which then produces cAMP.
cAMP activates PKA, the catalytic subunit (PKAC) of which phosphorylates
numerous targets including the β1-AR, potassium channels, calcium channels,
ryanodine receptors, phospholamban, and troponin I. Meanwhile, cAMP is
degraded by phosphodiesterase 3 and 4 (PDE3, PDE4).

To elucidate the dynamics of cAMP in cardiac cells, it is necessary to analyze the ki-

netics of the transduction of a sympathetic stimulus from β1-AR activation to the increased

production of cAMP and resulting active PKA. Upon sudden and prolonged activation of β1-

adrenergic receptors, as occurs during a sympathetic surge, cAMP increases over one to two

minutes and then gradually decreases to an intermediate level [60]; the maximum achieved

during the transient rise is often markedly higher than the final steady state. We refer to

this transient cAMP over-elevation during the initial phase of the stimulus as “overshoot”.

It is of interest to identify biological parameters that modulate overshoot, and how these
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parameters may be manipulated to change the amplitude of the large overshoots in cAMP

concentration while maintaining the functional dynamic range of physiological output – that

is, the range of attainable steady state cellular concentrations of cAMP. Mathematical mod-

eling is a useful tool to analyze the mechanisms responsible for the temporal complexity

of cAMP concentration in cardiac myocytes and to explore the changes in parameters that

influence the dynamics of this behavior. Of the biophysically detailed computational models

for the adrenergic signaling cascade in myocytes that have been constructed, perhaps most

widely used is the Soltis-Saucerman model [59,60,65], which connects β-AR signaling with

electrophysiology in rabbit ventricular myocytes, including the processes outlined above and

depicted in fig. 2.1. Although the Soltis-Saucerman model is for ventricular cells rather than

SAN cells, a more complex but nonetheless cAMP-dependent mechanism exists in SAN cells

(see [38], esp. fig. 1B); therefore, these results shed light on the kinetics of the increase in

frequency in SAN cells as a result of SNS activity.

The present work uses the Soltis-Saucerman model as a foundation, owing to its biophys-

ical detail, and aims to simplify this model to identify the rate-determining processes for the

kinetics of the adrenergic signaling pathway. We use dimension reduction techniques to re-

duce the signaling subsystem of the original model to a two-dimensional system of differential

equations. We then use phase plane techniques to analyze the mechanisms of overshoot in

cAMP concentration and to identify ways to modify the amplitude of the overshoot, as well

as to clarify the general relationships between parameters and outcomes of cAMP production

across a range of conditions. Finally, we note that GRK2 is both known to interact with a

variety of targets [53] and associated with cardiac pathology [43]. It is not known whether

the effects of GRK2 overexpression and inhibition are mediated by adrenergic signaling or by

other targets. Given that downregulation of GRK2 has been proposed as a synergistic ther-

apy alongside β-blockers [13, 47], we consider the potential mechanisms by which changes

to GRK2 activity might impact cellular cAMP signaling. Analysis of these mechanisms in

the two-variable model using the phase plane elucidates how concurrent GRK2 inhibition
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might modify the effects of β-blockers on myocytes. Our results suggest that a simplified

two-dimensional model can capture the extent to which the isolated adrenergic signaling

pathway mediates both the potentially harmful effects of GRK2 in heart failure and the

therapeutic benefits of its downregulation by pharmaceutical agents.

2.2. Model of β1-adrenergic signaling pathway

The Soltis-Saucerman model for electrophysiology [59, 60, 65] uses a system of mass-

action-based differential equations to simulate the processes of electrophysiology, calcium

flux, and signaling from CaMKII and the sympathetic nervous system in a rabbit ventricular

myocyte. We isolate the β-adrenergic signaling subsystem of the Soltis-Saucerman model,

which stands alone and does not receive feedback from the downstream cellular targets or

other model components.

The adrenergic signaling portion of the Soltis-Saucerman model contains sixteen vari-

ables (see Appendix A.1) that model the sequence of biochemical reactions triggered by the

binding of norepinephrine (NE) or an adrenergic agonist to a β1-adrenergic receptor and lead

to the activation of PKA. Seven of the variables are governed by differential equations. Of

these seven dynamic variables, two variables are “read-out” components that do not affect

other variables; two other variables can be removed using the conservation conditions, and a

fifth variable can be removed by exploiting separation of time scales and setting the variable

to its quasi-steady state. The resulting reduce system has two dynamics variables: the con-

centration of cAMP (c) and the concentration of non-desensitized β1-AR (β). The algebraic

equations for variables in pseudo-equilibrium are left unchanged. A detailed description of

the model reduction in presented in Appendix A.2.

The two-dimensional system of differential equations that describes β1-adrenergic signal-

ing is:
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dβ

dt
= p10(βtot − β)− p9βPKAc1(c)− F1(β;Ltot)(2.1)

dc

dt
=

(
p15p20

p15 + p23

)
ACb(β;Ltot) +

(
p15p21

p26(p15 + p23)

)
ACs(β;Ltot)

−
(
p16p28cf (c)

p29 + cf (c)
+
p17p30cf (c)

p31 + cf (c)

)
where Ltot is the total concentration of norepinephrine (NE) or adrenergic agonist; βtot is

the total concentration of β1-ARs; F1 is the rate of β1-AR desensitization by GRK2; cf

is the concentration of “free” cAMP (not bound to PKA); p9 is the rate constant of β1-

AR desensitization by PKA; p10 is the resensitization rate of phosphorylated β1-AR; p15 is

cellular ATP concentration; and p16, p17, p20, p21 and p23 are rate constants and saturation

constants associated with production of cAMP by AC and degradation of cAMP by PDE3

and PDE4. Details of the functions PKAc1, F1, ACb, AC2 and cf are provided in the

appendix. Parameters were unchanged from the full model described in [59] and [60], except

in specific cases described in sections 4.3-4.5. Simulations were performed in MATLAB using

ode15s, and algebraic equations were solved using the fsolve root-finding algorithm with

appropriate initial conditions.

The reduced model captures the four dynamic processes that govern the temporal dynam-

ics of β1-adrenergic signaling: (1) the terms
(

p15p20
p15+p23

)
ACb(β;Ltot) and

(
p15p21

p26(p15+p23)

)
ACs(β;Ltot)

model the rate of production of cAMP by adenylyl cyclases V and VI at a basal rate and

a rate stimulated by GGTP
s,α ; (2) the terms

(
p16p28cf (c)

p29+cf (c)
+

p17p30cf (c)

p31+cf (c)

)
model the rate of degra-

dation of cAMP by phosphodiesterases 3 and 4; (3) the terms p9PKAc1(c)β + F1(β;Ltot)

model the rate of desensitization of β1-ARs by PKA and by GRK2, respectively; and (4) the

term p10(βtot − β) models the rate of resensitization of desensitized β1-ARs. Details of the

functions PKAc1, F1, ACb, AC2 and cf are provided in Appendix A.2.

We validate the reduced model by comparing its predictions against those made by the

full model for cAMP and non-desensitized β1-AR concentrations, as well as for concentrations
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of PKA and other components of the signaling pathway, under the abrupt application and

removal of NE. As shown in the example in fig. ??, the reduced model (red dashed curves)

exhibits behavior almost indistinguishable from the full model (blue curves). This excellent

agreement between the full model and the reduced model holds across a wide range of NE

concentrations (0.001-10 µM) and parameter regimes (see Appendix A.3, fig. A.2).

2.3. Results

2.3.1. Reduced Model Behavior. When norepinephrine or adrenergic agonist is added

to a ligand-free system (fig. 2.2), the concentration of non-desensitized β1-ARs gradually

decays over tens of minutes (fig. 2.2A). Cellular concentration of cyclic AMP increases over

a period of approximately 1 minute, reaching a transient maximum, and then gradually

decreases to an intermediate value between the ligand-free resting state and the maximal

concentration (fig. 2.2B). In particular, fig. 2.2 depicts the “overshoot” phenomenon that

occurs when the initial condition is the steady state for the ligand-free system, and a high

dose of 100 nM NE is added.

2.3.2. Phase Plane Analysis. We further examine the underlying mechanisms for

the dynamics of the system by using the phase plane, which divides state space into regions

where the variables each increase and decrease. The curves or “nullclines” delineating these

regions are the zero contours for the derivatives of each dynamic variable. The resulting

half-planes on either side of each nullcline form the regions of increase and decrease for each

variable; the full plot is called a phase plane.

Figure 2.3 shows the phase plane for the reduced signaling model (2.1) both in the NE-

free condition (NE−) and in the presence of high NE or adrenergic agonist concentration

(NE+). With no agonist (fig. 2.3B), the cAMP nullcline is nearly horizontal, while the β

nullcline is approximately vertical, and there is one stable steady state at their intersection.

The cAMP variable c changes more rapidly than does concentration of non-desensitized β1-

ARs, so that the system initialized away from the steady state reaches the c nullcline first
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Figure 2.2. Predictions for cellular response to a change from basal condi-
tions to 100 nM NE and subsequent return to 0 NE in the full (solid blue line)
and reduced (dashed red line) Soltis-Saucerman model. Agonist is applied
from 2 to 15 minutes of the simulation (black bar in B). A: both models pre-
dict a slow decrease in β upon application of NE, followed by a slow increase
when NE is removed. B: in both models, cyclic AMP concentration transiently
increases for 1-2 minutes and then gradually decays to a steady state in the
presence of a high NE concentration. Overlay includes the trajectory from fig.
S1, panel A in [60] and data (circles), taken from [28]. Vertical double-arrow
depicts “overshoot,” the difference between transient maximum and elevated
steady state. Removal of NE leads to a small undershoot and return to the
basal steady state. The models show nearly identical outputs, indicating that
the reduction does not substantially change predictions. Green and black cir-
cles indicate steady-state values of variables for NE- and NE+ conditions, just
preceding application and removal of NE respectively (see fig. 2.3).

before slowly tracing this nullcline to the global steady state. This transition is depicted by

the green trajectory in fig. 2.3A.

The cAMP and β1-AR nullclines shift in response to changes to the ligand concentration.

When agonist concentration increases suddenly from 0 to 100 nM, as in the transition from

fig. 2.3B to 2.3A, the slope of the cAMP nullcline increases and the β1-AR nullcline moves

to the left in the phase plane. Because c changes much more rapidly than β, the state of the

system first moves almost vertically in the phase plane towards the cAMP nullcline, then
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traces this nullcline downward to the new global steady state as β adjusts more slowly (green

curve in fig. 2.3A). Note that the steepness of the cAMP nullcline under high-NE conditions

paired with the difference in time scales between the dynamics of c and β creates the cAMP

“overshoot” as the system evolves from the initial condition at the NE- steady state to the

new at NE+ steady state. The magnitude of overshoot can be estimated by the vertical

difference in (β, c) state space between the NE- steady state and the corresponding point

on the cAMP nullcline in the NE+ condition (vertical difference between green circle and

red curve in fig. 2.3A). Note that this metric consistently overestimates the the magnitude

of the overshoot, but it enables a direct, mechanistic analysis of the relationships between

parameters and cAMP dynamics, and it can provide an efficient approximation over a broad

range of parameter conditions (e.g., the maximal error of the approximation in the result

presented below is 20%).

The “dynamic range” of the β1-AR signaling pathway can be defined as the difference

between the steady state cAMP concentration with no NE and the steady state with a high

dose of NE. Under default parameter conditions, the dynamic range of cAMP is approx-

imately 1 µM (difference in cAMP between green and black circles in fig. 2.3A and B).

This range measures the overall responsiveness of the cell to adrenergic input. Moreover,

this measure provides a relative estimate of the responsiveness of overall cardiac response to

sympathetic tone, as heart rate increases with cAMP concentration.

2.3.3. Norepinephrine and Phosphodiesterase Modulate cAMP Overshoot.

Phase plane analysis can be used to efficiently quantify the relationship between cellular

conditions and predicted outcomes, and to directly show how these outcomes depend on

the steady-state relationships between the two variables. We selected parameters important

to the four dynamic processes that affect the two-variable model: total phosphodiesterase

concentration, total β1-AR concentration, and β1-AR GRK2 desensitization rate constant

(kGRK2). As in section 3.2, we approximated overshoot as the vertical difference in (β, c) state
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Figure 2.3. Phase plane for the two-variable reduced model: cAMP null-
cline (red) and β nullcline (blue) divide state space into regions where cAMP
concentration and active β1-AR concentration increase and decrease (see text).
A: high dose, 100 nM NE; B: NE-free condition. Synaptic NE concentration
changes the slope of the cAMP nullcline and the position of the β nullcline.
Green and black circles are located at the steady states for the NE-free and
high-dose NE conditions, respectively, and used as initial data for the alternate
condition, producing the trajectories corresponding to the solutions shown in
fig. 2.2. Vertical arrow depicts the “overshoot,” in which the nearly vertical
rise to the cAMP nullcline precedes a slower decay to the NE+ steady state.
Note that cAMP concentration changes more rapidly than does the β concen-
tration, leading to overshoot when the cAMP nullcline moves abruptly. The
amplitude of the overshoot can be estimated by the height of the cAMP null-
cline at the NE- steady state (i.e., vertical distance between green circle and
red curve in A). The vertical difference between NE+ and NE- steady states
(green and black circles) represents “dynamic range”, i.e. cellular responsive-
ness to ligand.

space between the NE- steady state and the corresponding point on the cAMP nullcline in

the NE+ condition (e.g. vertical difference between green circle and red curve in fig. 2.3A).

As shown in fig. 2.4A, with default parameters, overshoot amplitude increases markedly

with NE concentration up to [NE] ≈ 100 nM, beyond which both the maximum and steady-

state cAMP concentration saturate with respect to NE concentration (fig. 2.4 A). The
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dynamics of cAMP concentration are modulated by phosphodiesterases 3 and 4, depicted

in fig. 2.4B-D. Default PDE bulk concentration was taken to be 0.072 µM, as in [59]

and [60]. Increased PDE concentration (0.144 µM) reduces the slope of the high-NE cAMP

nullcline (fig. 2.4C). This diminishes the amplitude of cAMP overshoot, as the maximal

cAMP concentration reached in the NE+ case is close to the steady state for the NE-

case. Moreover, increased PDE concentration reduces the steady states and maximal cAMP

concentrations over a broad range of NE concentrations, including at very high NE (fig.

2.4B). Thus, the dynamic range of cAMP concentration, and therefore the responsiveness

of the cell to a range of adrenergic input, is markedly diminished when PDE concentration

is increased. This reduction in both overshoot amplitude and dynamic range of cAMP

concentration takes place over a narrow range of total PDE concentrations (fig. 2.4D).

2.3.4. Phase Plane Analysis of Early Heart Failure and β-blockers. The rela-

tionships between various parameters and the phase plane can be used to investigate changes

to cellular signaling akin to those that occur early in heart failure, which is associated with

both chronic elevation of resting catecholamines and enhanced activity of GRK2. While

β-blockers competitively inhibit β1-ARs, GRK2 has recently been proposed as an additional

therapeutic target in heart failure [13]. In fig. 2.5, we demonstrate how cellular conditions

associated with β1AR inhibition and GRK2 downregulation impact the adrenergic signaling

system.

In fig. 2.5, we examine the separate and joint effects of heart failure described above in

fig. 2.5. In all panels, blue curves represent β nullclines and red curves are c nullclines. Solid

lines represent the 0 or “low” NE case (NE−) while dashed lines indicate the “high” NE

(NE+) cases. Green curves represent trajectories of transition from the NE- steady state to

the NE+ steady state, indicative of the cAMP response when NE is applied suddenly.

First, we assess the consequence of changes to baseline NE levels in early HF by changing

the “low concentration” of ligand to 10 nM NE rather than 0, and considering the difference

between a relatively high dose of 10 nM NE in a healthy condition with an increased high
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Figure 2.4. Effects of phosphodiesterase bulk concentration on cAMP over-
shoot. A: cAMP steady state (blue) and maximum (red), compared to the
NE- steady state (gray), with total PDE concentration 0.072 µM as in [59]
and [60]. As NE increases through several orders of magnitude, overshoot am-
plitude increases most sharply between 10 and 100 nM NE. B: cAMP steady
state and maximal concentration, as in A, with bulk PDE concentration dou-
bled to 0.144 µM. The steady state and maximal concentrations of cAMP are
both reduced. C: c and β nullclines with 1µM NE, and total PDE concen-
trations 0.072 µM (solid red curve) and 0.144 µM (dashed red curve). The
gray curves denote the NE- nullclines, and the blue curve depicts the NE+
β nullcline, which is unaltered by increased PDE. Increased concentration of
PDE reduces the slope of the cAMP nullcline, changing the steady state con-
centrations of both c and β and the amplitude of the cAMP overshoot. D:
cAMP steady state (blue) and maximum (red) for 1µM NE, with varying con-
centrations of total phosphodiesterase (sum of PDE3 and PDE4). As PDE
concentration increases over a narrow range of values, the amplitude of cAMP
overshoot decreases.

dose of 100 nM in heart failure (compare fig. 2.5A and B). Higher β1-AR activity increases

the slope of the cAMP nullcline, which increases the amplitude of the transient “overshoot”

in cAMP concentration.

17



In fig. 2.5C we plot the nullclines for 10 and 100 nM NE, as in B, and additionally

increase kGRK2 by a factor of 2, corresponding to up-regulation of GRK2. The up-regulation

of GRK2 shifts the NE+ β-nullcline (dashed blue curve) to the left, reducing the dynamic

range of cAMP concentration. The phase plane in each of these cases depicts a markedly

larger transient increase in cAMP production than is observed in the “healthy” case (contrast

fig. 2.5 B and C with A) due to the steeper cAMP nullcline, due to the elevated levels of

NE both at rest and in heightened SNS activity. Meanwhile the high-NE β nullcline shifts

to the left due to the increased GRK2 activity (fig. 2.5B compared with C), reducing the

difference between the NE- and NE+ steady state cAMP concentrations. These changes act

to increase the overshoot amplitude and decrease the dynamic range. That is, they increase

the high cAMP concentrations but reduce the overall responsiveness of the cell to adrenergic

input.

In Fig. 2.5D-F, we consider the pharmacological effects of β-blockade and downregulation

of GRK2 by varying the available β1-AR concentration βtot and the GRK2 desensitization

rate constant kGRK2. Panel D shows the phase plane for 10 and 100 nM NE with total β1-AR

concentration reduced by half and other parameters at default values. Reducing total β1-

AR concentration mimics inhibition of β1-ARs. Comparison between panels B and D shows

the role of β1-AR availability alone in determining cellular cAMP dynamics. Comparison

between C and D considers the joint effect of β1-AR inhibition and GRK2 inhibition in

reducing β1-AR availability and reversing the up-regulation of GRK2. Panel E displays the

phase plane with 10 and 100 nM NE, with β1-AR concentration halved and kGRK2 doubled.

Comparison between C and E can be thought of as the scenario in which GRK2 activity

increases in early heart failure, and β-blockers do not reduce this upregulation. Finally, in

fig. 2.5F we show the phase plane with 10 and 100 nM NE with both β1-AR concentration

and kGRK2 halved. Comparison between C and F represents the case where β-blockers

reduce β1-AR availability and inhibit GRK2, compensating for kGRK2 upregulation in early

heart failure. In contrast to the “heart failure” conditions, the decrease in available β1-AR
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Figure 2.5. Putative effects of β-blocker treatment on markers of early heart
failure. In all panels, blue curves represent β nullclines and red curves are c
nullclines. Solid lines represent 0 NE (NE−) while dashed lines indicate the
NE+ cases with varying concentrations of NE. Green curves are trajectories
from simulations with initial condition at the NE- steady state transitioning to
the NE+ steady state. A: phase plane with 0 and 10 nM NE and default pa-
rameters, corresponding to a healthy system. B: phase plane with cAMP and
β nullclines for 10 and 100 nM NE, corresponding to elevated catecholamine
levels at rest as in early heart failure. C: nullclines for 10 and 100 nM NE,
as in early heart failure; additionally, kGRK2 is increased by a factor of 2,
corresponding to up-regulation of GRK2. D: phase plane for 10 and 100 nM
NE with total β1-AR concentration reduced by half and other parameters at
default values. E: phase plane with 10 and 100 nM NE, with β1-AR concen-
tration halved and kGRK2 doubled. F: phase plane with 10 and 100 nM NE
with both β1-AR concentration and kGRK2 halved.

concentration shifts both NE− and NE+ β-nullclines to the left (fig. 2.5, compare B and

D), while the inhibition of GRK2 shifts the NE+ β-nullcline to the right, closer to the NE-

β nullcline (fig. 2.5, D-F). These changes jointly counteract the two simulated effects of

early heart failure, reducing the amplitude of cAMP overshoot while partially restoring the

dynamic range of cAMP concentration.

The important implication of the findings in fig. 2.5 is that the two pathways of β-block

and GRK2 downregulation counteract each other to move the NE− β-nullcline to the left
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and the NE+ β nullcline to the right, closer to the NE− β-nullcline, thereby controlling the

amplitude of the overshoot while maintaining a portion of the dynamic range.

2.3.5. Quantifying Overshoot and Dynamic Range in HF and treatment with

β-blockers. The phase plane predicts that the two proposed mechanisms of pharmaceutical

treatment, inhibition of β1-ARs and downregulation of GRK2, act synergistically to reduce

the overshoot amplitude of cAMP while maintaining cellular responsiveness to changes in

adrenergic agonist concentration. In fig. 2.6, we quantify these effects using predictions

generated by nullcline analysis.

Figure 2.6A compares the total accessible dynamic range in four conditions. We simulate

the elevated catecholamine levels in early heart failure by raising the “low dose” (NE-) of

NE from 0 to 10 µM and the “high dose” (NE+) from 10 to 100 µM in the “heart failure

”model. Upregulation of GRK2 is modeled by doubling the rate constant kGRK2 associated

with GRK2 phosphorylation of the β1AR. Together, elevated NE and reduced kGRK2 act

to reduce dynamic range in the “heart failure” case compared to the “healthy” system.

We simulate the action of selective β-blockers by reducing the total number of β1ARs by

half, which further reduces the dynamic range. We simulate the additional effect of down-

regulation of GRK2 concurrent with β1-AR inhibition by reducing kGRK2 to its baseline level,

which recovers a portion of the dynamic range.

Fig. 2.6B compares the transient maximal cAMP concentration across parameter regimes

for fixed values of dynamic range. Specifically, fig. 2.6B shows the maximal cAMP concen-

tration attained in each scenario during overshoot for the concentration of NE required to

achieve a difference of 0.26µM cAMP between NE- and NE+ steady states, corresponding to

the dynamic range seen in the concomitant drug treatment condition (β-block + ↓ GRK2).

Respective NE concentrations were 6.5 nM in the “healthy” case, 27 nM in the “HF” case,

and 1µM in the “β-block + ↓ GRK2” case. The early heart failure model attains a higher

“overshoot” cAMP concentration (1.4µM) than does the healthy model (0.82µM), due to

20



Figure 2.6. Effects of early heart failure and β1-AR inhibition on cellular
cAMP baseline, maximum concentration attained during overshoot, and dy-
namic range as predicted by nullcline analysis. A: dynamic range in four
conditions: healthy (baseline 0µM NE and “high dose” 10 µM NE; early heart
failure (elevated baseline NE [10µM] and elevated “high dose” NE [100µM]; β-
block (as in HF, and with total concentration of β-ARs reduced by 50%); and
β-block with concurrent GRK2 downregulation (as in β-block, and with kGRK2

reduced by 50%). B: maximal cAMP concentration attained during overshoot
for the amount of NE required to achieve a dynamic range of 0.26µM cAMP,
compared across the “healthy”, “HF”, and “β-block + ↓ GRK2” scenarios.

the elevated baseline levels of NE and consequently further elevated “high dose” NE concen-

tration. With NE levels corresponding to the elevated baseline used to simulate early heart

failure, the joint treatment of β-blockers with GRK2 downregulation reduces the overshoot

amplitude (1.18µM cAMP) for a fixed dynamic range of 0.26 µM cAMP. These results sug-

gest that GRK2 downregulation could act synergistically with β1-AR inhibition to maintain

the cellular responsiveness to adrenergic activity while reducing the transiently high levels

of cAMP.

2.4. Discussion

The β-adrenergic signaling pathway is a complex biochemical cascade that is triggered

by the binding of norepinephrine to β-adrenergic receptor and leads to the modulation

of intracellular cAMP and PKA concentration, which in turn precipitate a wide variety
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of downstream effects that alter cellular electrochemical behavior. The Soltis-Saucerman

model [59,60] is a widely-used mathematical model that provides a detailed description of

this signaling pathway, using seven dynamic variables and several auxiliary variables. By

eliminating non-essential variables and using quasi-steady state approximations, we reduce

the β1-adrenergic signaling component of the Soltis-Saucerman model to a system of two

ordinary differential equations for cellular cAMP concentration and non-desensitized β1-AR

concentration. The success of this reduced model in replicating predictions of the full model

reveals the rate-determining steps for the kinetics of the portion of the β1-adrenergic signal-

ing cascade up to PKA activation. Namely, production of cAMP by adenylyl cyclase and

degradation of cAMP by phosphodiesterase are the primary determinants for the kinetics of

the sympathetic-induced rise in cellular cAMP concentration, on a time scale of ∼1 minute.

The desensitization of β1-ARs by PKA and by GRK2, and subsequent resensitization of the

receptors, control the time scale of the slow decline of cAMP concentration to steady state

during prolonged norepinephrine exposure, which occurs over ∼10 minutes. Thus, the re-

duced Soltis-Saucerman model suggests that cAMP production and degradation and β1-AR

desensitization and resensitization dictate the temporal kinetics of cAMP, and the associated

changes in heart rate and contractility, in response to changes in SNS activity as in physical

and emotional arousal.

The analysis presented here explicitly quantifies the relationship between synaptic adren-

ergic agonist concentration and magnitude of cellular response. Moreover, the phase plane

makes apparent that the size of this overshoot is modulated by the steepness of the cAMP

nullcline in (β, c) space, the position of the β-AR nullcline, and the difference in time scales

between relatively fast cAMP dynamics and relatively slow desensitization and resensitiza-

tion of β1-ARs.

Given the time scale of tens of seconds between the onset of receptor activation and

increased cAMP concentration, the cAMP overshoot requires a sufficiently abrupt increase

in adrenergic agonist. As demonstrated in our results, a sudden large increase in agonist
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concentration leads to transiently high cAMP concentration, i.e., overshoot. However, in

the hypothetical scenario in which norepinephrine were to be applied at a more gradual

rate commensurate with the stimulated production of cAMP by adenylyl cyclase, the quasi-

steady-state cAMP concentration would also shift gradually, preventing the initial rise in

cAMP concentration seen in overshoot. Instead, cAMP would increase monotonically to the

NE+ steady state. Thus, we expect slow increases in SNS activity to cause markedly lower

transient cAMP amplitude as compared with rapid increases in SNS activity, i.e. sympathetic

surges.

Our analysis generates predictions regarding how cellular cAMP overshoot will respond

to various changes to cellular conditions. Changes to bulk PDE concentration, for instance,

alter the amplitude of cAMP overshoot, but also greatly reduce the range of attainable

steady-state cAMP concentrations, impairing the heart’s ability to respond to fluctuations in

sympathetic tone. Thus, PDE in cardiac myocytes is likely not an effective pharmacological

target in counteracting the cellular adaptations present in heart failure. It has recently been

shown, however, that PDE2A in stellate ganglion neurons may be an effective target for

reducing sympathetic hyperactivity [40].

Adrenergic surges are known to be especially arrhythmogenic in individuals with heart

failure and other pathologies. The success of the reduced model at replicating the predic-

tions made by the full Soltis-Saucerman model demonstrates that the concentration of two

variables, cAMP and non-desensitized β1AR, capture the overall dynamics of sympathetic

signaling. Therefore, the effects of heart failure, and other diseases of the sympathetic ner-

vous system, on components of the β1-adrenergic signaling pathway can be reduced to how

disease alters the factors that directly impact cAMP production/degradation and beta-AR

(de)phosphorylation. The key factors influencing cAMP production are AC activity and

PDE3,4 activity, while those that directly impact β1AR phosphorylation are βARK and

PKAI activity; thus, we expect these factors to be effective targets for pharmaceutical ther-

apy in diseases affecting the cardiac nervous system. It should be noted that we do not
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address chronic heart failure, which results in a wide array of structural and biochemical

changes throughout the heart, including a reduction in β1AR density as well as changes to

sympathetic cardiac innervation [57].

Our work demonstrates that the dynamics of only the cellular concentrations of cAMP

and non-desensitized β1AR can capture how two of the effects of early heart failure, alter-

ation of the resting levels of adrenergic agonists and upregulation of GRK2, jointly act to

change the maximal transient cAMP concentration and the longer-term overall responsive-

ness of the cell to sympathetic stimulation. Among the many structural and physiological

changes in heart failure, up-regulation of GRK2 is frequently observed and suspected to

play a role in cardiac pathology, whether due to its effects on adrenergic signaling or other

interactions [43]. Increased levels of baseline norepinephrine increase the slope of the cAMP

nullcline, which heightens the transient cAMP amplitude during “overshoot”. Meanwhile,

the upregulation of GRK2 activity shifts the β nullcline to favor lower concentrations of β,

reducing the cAMP concentration at the stimulated steady state and therefore diminishing

the cell’s responsiveness to NE concentration changes. These results, while omitting the

complexity of the compensatory mechanisms present in various stages of heart failure, pro-

vide a qualitative proof of concept demonstrating that the effects of early stages of heart

failure on the adrenergic signaling pathway can be captured by the processes controlling the

dynamics of cAMP and non-desensitized β1 adrenergic receptors.

Pharmacological inhibitors of β-adrenergic receptors, known as β-blockers, are generally

considered protective in heart failure, but often also come with cardiac and other medi-

cal risk [6, 7, 17, 37]. Modeling work has considered the effects of β-blockers on both the

“maintenance” and the “inhibition” of cellular responsiveness to adrenergic stimulation [2],

suggesting that these two processes need not be viewed as mutually contradictory. Sepa-

rately, recent work has identified a wide range of targets of GRK2 [53] and demonstrated

that reduction of GRK2 activity, either genetic or pharmacologic, may improve overall car-

diovascular function, particularly in heart failure [42, 62]. Some experiments suggest that
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diminished GRK2 activity may act synergistically with β-blocker therapeutic drugs to pre-

vent mortality risk in individuals with heart failure [13, 42, 47, 62]. Our results suggest

a mechanistic justification for this hypothesis: lowering GRK2 activity alongside β1-AR

inhibition reduces the amplitude of cAMP overshoot, and partially rescues the dynamic

range of cAMP concentration compared with β-blockers alone in heart failure conditions.

Taken together, these “maintenance” and “inhibition” processes work to counteract the sim-

ulated effects of early heart failure. To evaluate these predictions, our simulations should be

compared with the efficacy of various β-blockers and GRK2 inhibitors, administered both

separately and concurrently, for reducing mortality and heart failure symptoms particularly

in early HF. While the predictions made by this model are qualitative rather than precise,

the two-variable model provides a simple framework by which to assess and compare how

various pharmaceutical treatments may affect adrenergic signaling.

It has been posited that an imbalance between the magnitude and timing of sympathetic

and parasympathetic nervous system activity is a primary driver for arrhythmias in heart

disease. Prior modeling work [30,31] has explained a cellular cAMP “overshoot” phenome-

non with similar temporal dynamics to that shown here as a consequence of this time-scale

mismatch along with subcellular compartmentation of separate pools of cAMP and signaling

components. By examining the isolated Gs-mediated pathway, we have demonstrated that

overshoot can occur and can be modified independent of parasympathetic input. Given the

prior evidence that mismatch between sympathetic and parasympathetic activity enhances

cAMP transient elevation and heightens arrhythmogenic risk, it would be beneficial to further

explore the subcellular signaling pathways involved in these two systems, and the interaction

between the two. For instance, experiments with cells containing the β1-adrenergic signal-

ing machinery, but lacking muscarinic receptors or inhibitory G-protein, could differentiate

between β1-AR desensitization and parasympathetic nervous system activity as mechanisms

for cellular cAMP overshoot during sympathetic stimulation.
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Variable Number Variable Name Description
1 L β-AR agonist
2 R β-AR
3 G available G-protein
4 β unphosphorylated β1-AR
5 βBARK β-AR phosphorylated (inhibited) by β-ARK
6 βPKA β-AR phosphorylated by PKA
7 Gα, GTP Total GGTP

α

8 Gα, GDP GGDP
α

9 Gβγ Gβγ

10 Gf
α, GTP Free GGTP

α

11 Fsk Forskolin
12 AC adenylyl cyclase
15 c total cAMP
16 cf free cAMP
17 PKAc1 Catalytic subunit of PKAI
18 PKAc2 Catalytic subunit of PKAII

Table 2.1. Variable names and definitions for the β1-adrenergic signaling
subsystem of the Soltis-Saucerman model.

2.5. Appendix

2.5.1. Soltis-Saucerman model. The adrenergic signaling subsystem of the original

model [59,60,65]) has 16 variables (Table A.1):

The variables obey a system of ordinary differential equations (ODEs) and differential

algebraic equations (DAEs), as follows. The algebraic equations reflect conservation laws

and steady-state concentrations for reactions assumed to reach steady state instantaneously.

Algebraic Equations:

Ligand-Receptor Equations

L = Ltot −
L ·R
p4

− L ·R ·G
p4 · p5

R = β − L ·R
p4

− L ·R ·G
p4 · p5

− R ·G
p6

G = p3 −
L ·R ·G
p4 · p5

− R ·G
p6
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G-protein-AC activation equations

Gf
α, GTP = Gα, GTP −

Gf
α, GTP · AC

p26

AC = p14 −
Gf
α, GTP · AC

p26

cAMP-PKA equations

cf = c−
[
p36

cf
· PKAc1

p38

· PKAc1 ·
(

1 +
p35

p39 + PKAc1 + PKAc2

)]
2
PKAc1
p38

· PKAc1 ·
(

1 +
p35

p39 + PKAc1 + PKAc2

)
− 2PKAc1 ·

(
1 +

p35

p39 + PKAc1 + PKAc2

)
−
[
p36

cf
· PKAc2

p38

· PKAc2 ·
(

1 +
p35

p39 + PKAc1 + PKAc2

)]
− 2

PKAc2
p38

· PKAc2 ·
(

1 +
p35

p39 + PKAc1 + PKAc2

)
− 2PKAc2 ·

(
1 +

p35

p39 + PKAc1 + PKAc2

)
0 = 2p33c

2
f − PKAc1

(
1 +

p35

p39 + PKAc1 + PKAc2

)[(
p36 · p37

p38

+
p36 · cf
p38

+
c2
f

p38

)
PKAc1 + c2

f

]
0 = 2p34c

2
f − PKAc2

(
1 +

p35

p39 + PKAc1 + PKAc2

)[(
p36 · p37

p38

+
p36 · cf
p38

+
c2
f

p38

)
PKAc2 + c2

f

]
Differential Equations:

β1 − AR dynamics

dβ

dt
= p8βBARK −

p7

p4

L ·R− p7

p4 · p5

L ·R ·G+ p10βPKA − p9βPKAc1

dβBARK
dt

= −p8βBARK +
p7

p4

L ·R +
p7

p4 · p5

L ·R ·G

dβPKA
dt

= −p10βPKA + p9βPKAc1
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G-protein dynamics

dGα, GTP

dt
=
p11

p6

R ·G+
p11

p4 · p5

L ·R ·G− p12Gα, GTP

dGα, GDP

dt
= p12Gα, GTP − p13Gα, GDPGβγ

dGβγ

dt
=
p11

p6

R ·G+
p11

p4 · p5

L ·R ·G− p13Gα, GDPGβγ

cAMP dynamics

dc

dt
=

(
p15p20

p23 + p15

)
AC +

(
p15p21

p24 + p15

)
Gf
α, GTPAC

− p16p28cf
p29 + cf

− p17p30cf
p31 + cf

2.5.2. Reduction to two-variable model. STEP 1 (G-protein dynamics): Note that

the he variables Gα,GDP and Gβγ do not appear in any equations other than the differential

equations governing their own dynamics. Therefore, the equations for Gα,GDP and Gβγ can

be removed from the system, leaving only the single differential equation for Gα,GTP in the

G-protein subsystem.

STEP 2 (β1-AR dynamics): Note that the three states of the β1-AR (β, βBARK , and

βPKA) obey the conservation law

β + ββARK + βPKA = βtot

where the constant βtot is the total concentration of β1-ARs. Furthermore, because

p8 = p10 in the Soltis-Saucerman model, the variables βBARK and βPKA representing phos-

phorylated β1-AR states only appear as a sum in the differential equation for β. Therefore,

βBARK and βPKA can be removed by replacing their sum with βtot − β, which yields the

single differential equation for the dynamics of β.
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Thus, these observations yield a system of three differential equations for cAMP dynam-

ics:

dβ

dt
= p10(βtot − β)− p7

p4

L ·R− p7

p4 · p5

L ·R ·G− p9βPKAc1

dGα, GTP

dt
=
p11

p6

R ·G+
p11

p4 · p5

L ·R ·G− p12Gα, GTP

dc

dt
=

(
p15p20

p23 + p15

)
AC(Gα,GTP ) +

(
p15p21

p24 + p15

)
Gf
α, GTP · AC(Gα,GTP )

− p16p28cf
p29 + cf

− p17p30cf
p31 + cf

We define F1(β;Ltot) as the desensitization rate of β1-AR phosphorylated by GRK2:

F1(β;Ltot) = kGRK2

(
1

p4

L ·R +
1

p4 · p5

L ·R ·G
)

and F2(β;Ltot) as the rate of G-protein activation:

F2(β;Ltot) =
p11

p6

R ·G+
p11

p4 · p5

L ·R ·G

where L, R, and G are obtained by solving the LRG equations. (Note that kGRK2 is

named as kβARKp in [60].) Both AC(Gα,GTP ) and Gf
α,GTP can be obtained explicitly by

solving the G-protein-AC algebraic equations:

AC =
−Gα, GTP + p14 − p26 +

√
(p14 + p26 −Gα, GTP )2 + 4p26Gα, GTP

2

Gf
α,GTP =

Gα, GTP − p14 + p26 +
√

(p14 + p26 −Gα, GTP )2 + 4p26Gα, GTP

2

and PKAc1(c) and cf (c) are obtained by solving the cAMP-PKA algebraic equations.

This system of three differential equations can be further reduced to a system of two

differential equations. Note that Gα,GTP changes much more rapidly than do β and c (see

fig. 2.1). Therefore, we can exploit this separation of time scales and eliminate Gα,GTP by

equilibrating to its quasi-steady value:

29



Figure 2.1. When the full model is initialized from a steady state with 0 NE,
and 1µM NE is abruptly added, GGTP

s,α adapts to its quasi-steady state value
much more rapidly than do cAMP and β1AR concentrations. This justifies the
simplification that GGTP

s,α reaches quasi-steady state instantaneously, reducing
the system of three variables to a two-dimensional system.

Gα,GTP =
p11

p12

(
RG

p6

+
LRG

p4p5

)
=
F2(β;Ltot)

p12

Thus, we obtain our reduced model (2.1):

dβ

dt
= p10(βtot − β)− F1(β;Ltot)− p9βPKAc1

dc

dt
=

(
p15p20

p23 + p15

)
ACb(β;Ltot) +

(
p15p21

p24 + p15

)
ACs(β;Ltot)

− p16p28cf
p29 + cf

− p17p30cf
p31 + cf

where ACb = AC, so that
(

p15p20
p23+p15

)
ACb(β;Ltot) represents the rate of cAMP produced

by adenylyl cyclase at a basal rate, not activated by Gα,GTP and ACs = AC ·Gf
α,GTP , so that(

p15p21
p24+p15

)
ACs(β;Ltot) represents the rate of cAMP produced by adenylyl cyclase stimulated

by Gα,GTP .
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2.5.3. Validation of Reduced Model. We validated the reduced model by comparing

its predictions to those made by the full model across a range of NE concentrations in each of

the scenarios described in fig. 2.5. In fig. 2.2A, we compare the cAMP steady states with 0

$muM NE (NE- ss) and a range of nonzero NE concentrations (NE+ss), and overshoot max

(OS max) attained from an initial condition at the NE- steady state, in the healthy condition

(βtot = 0.028µM, kGRK2 = 1.1e−3 sec−1). The reduced model replicates the predictions made

by the full model for the steady states. As described in fig. 2.3, the overshoot maximum is

estimated for the reduced model using the point on the cAMP nullcline corresponding to the

β value at the NE- steady state. In the full model, the overshoot maximum is computed using

the maximum value of cAMP attained during the simulation. This results in a consistent

overestimate of the overshoot maximum for the reduced model. In fig. 2.2B, we compute

NE- cAMP steady states using 0.01 µM NE, and increase kGRK2 to 2.2e−3 sec−1, to simulate

early heart failure. In fig. 2.2C we consider the effect of β-block by reducing βtot to 0.014

µM, with baseline NE and kGRK2 corresponding to the “HF” model. Finally, in fig. 2.2D we

consider the joint effect of β-block with kGRK2 inhibition by reducing kGRK2 to its standard

value of 1.1e − 3 sec−1, while keeping all other parameters fixed from fig. 2.2C. In all four

situations, the reduced model closely captures the steady states predicted by the full model,

and the overshoot calculation using the nullclines slightly overestimates the maximum cAMP

concentration.
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Figure 2.2. Comparison between the predictions of the full and reduced
model across a range of Ltot values in each scenario described in fig. 2.5. A:
cAMP steady states with 0 µM NE (NE- ss) and a nonzero NE concentration,
and overshoot max (OS max) attained from an initial condition at the NE-
ss, in the healthy condition (βtot = 0.028µM, kGRK2 = 1.1e − 3 sec−1). B:
as in A, but with NE- cAMP steady states computed using 0.01 µM NE and
kGRK2 = 2.2e − 3 sec−1. C: as in B, with βtot = 0.014µM. D: as in C, with
kGRK2 = 1.1e − 3. In all panels, the overshoot max in the full and reduced
model are computed from simulations (red and blue curves) and compared
with the estimate of overshoot max (green) computed using the value of the
cAMP nullcline corresponding to the β concentration at the NE- steady state.
The nullclines consistently overestimate the overshoot.
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CHAPTER 3

Gap Junctional Voltage Dependence and Weakly Coupled

Oscillators in SAN Pacemaker Synchrony

3.1. Introduction

As discussed in the Introduction, the SAN must generate tissue-scale electrical oscillations

robustly over a range of frequencies, depending on physical needs of the body and input from

the nervous system, in order to consistently pace the cardiac muscle tissue. Given that the

success of the SAN in pacing the myocardium relies on current transfer through electrical

coupling between individual cells, it is important to understand how the mechanisms of such

electrical coupling facilitate cardiac pacing.

Electrical conduction throughout the heart depends on cell-to-cell coupling primarily

accomplished by gap junctions. Gap junctions are plaques formed at the interface between

adjacent cell membranes containing multi-protein channels through which ions can travel

from one cell to an adjacent cell. By allowing current conduction between cells, gap junctions

are crucial in coordinating electrical activity throughout the heart, and therefore they are

vital to the overall pacemaking function in the heart.

Gap junctions are composed of subunits of proteins called connexins, of which several

isoforms are expressed differentially across regions of the heart. The SAN and AVN predom-

inantly contain Cx45 gap junctions, whereas Cx43 gap junctions are much more common

throughout the atria and ventricles ( [15,18]; see Table 1 in [18] for approximate abundance

levels of Cx40, Cx43, and Cx45 throughout each region of the heart). The differences in ex-

pression of gap junction type over space and in pathology raise the question of why Cx45 gap

junctions are expressed in the sinoatrial node, rather than the Cx43 gap junctions expressed

elsewhere in the heart.
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In order to examine how Cx45 gap junctions might be uniquely suited for the SAN, we

consider the functional differences between types of gap junctions. One prominent factor dis-

tinguishing the function of gap junction types is the dependence of conductance on junctional

voltage, i.e., the difference in membrane potential between the two coupled cells. Although

many electrophysiological models incorporate gap junctional coupling between cells, it is

conventionally assumed that coupling strength is constant; thus, the effects of voltage de-

pendence of gap junctional conductance are not well studied. Voltage-clamp studies show

that the conductance across gap junctions is maximized when the membrane potentials of

the two adjacent cells are similar; as the difference between membrane potentials (transjunc-

tional voltage, ∆V ) increases in absolute value, the conductance across the gap junction

decreases (see fig. 3.1 left panel). Conduction through Cx45 gap junctions displays a steeper

dependence on junctional voltage than does conduction across Cx43 gap junctions, and a

narrower window of junctional voltage in which the conductance is close to its maximal value.

Moreover, for any fixed junctional voltage, the conductance does not develop instantaneously

but displays time-dependent gating characteristcs and reaches the steady-state conductance

over a period of 10-100 milliseconds (fig. 3.1, right panel). This voltage-dependence develops

more rapidly in Cx45 than in Cx43 gap junctions (figure 3.1, taken from [19]).

Perhaps the most obvious explanation for the predominance of Cx45 gap junctions in the

SAN as compared with the atria is that Cx45 gap junctions help to achieve an overall lower

level of coupling within the SAN than in the atria. As argued in [9], the SAN (and AVN) may

need to maintain lower conductivity in order to allow for insulation from the surrounding

tissue, which acts as an electrical sink. The single-channel conductance of Cx45 gap junctions

is lower than that of Cx43 gap junctions, and there are fewer overall gap junctions in the

SAN than in the atria, both of which result in a lower average coupling conductance through

the SAN than the surrounding atrium [18]. The steeper voltage dependence of conductance

in Cx45 gap junctions, as compared with Cx43 gap junctions, further contributes to the

reduction in relative overall conductance in the SAN. However, in intrinsically oscillatory
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Figure 3.1. Voltage dependent gating of gap junctions composed of Cx45
(top left, present in the sinoatrial node) and Cx43 (bottom, present in the
atrium). Note that Cx45 gap junctions exhibit steeper voltage dependence,
that is, as voltage difference between the two cells increases, conduction across
the gap junction decreases. Right panel: time course of voltage dependence
in Cx45 (top right) and Cx43 (top right) gap junctions. Reproduced with
permission from [19].

SAN cells, the voltage-dependence of gating in Cx45 gap junctions may influence the phase-

locking properties in non-trivial ways, which would provide a more complex explanation for

the expression of Cx45 gap junctions in the SAN.

In the present work, we aim to analyze how the properties of voltage-dependent conduc-

tance in gap junctions influence synchrony in paired sinoatrial node cells. The nonlinearity

of the intrinsic cellular dynamics makes it difficult to fully understand the effects of voltage-

dependent coupling on synchronization of activity, and therefore it is helpful to separate the

intrinsic electrical properties of individual SAN cells from the particular form of coupling

in pairs of cells. The theory of weakly coupled oscillators provides a convenient and useful
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framework for our study, as it reduces the intrinsic electrical activity of each cell to a single

periodic variable and isolates this intrinsic activity from the effects of coupling. We ap-

ply this framework to understand the robustness of synchrony to heterogeneities in cellular

properties and in gap junctional coupling in groups of two or more cells in the sinoatrial

node. The theory of weakly coupled oscillators has been widely used to study synchro-

nization in networks of biological oscillators [64]. In particular, prior work has applied a

reduced phase model [41] and the theory of weakly coupled oscillators [35] to analyze syn-

chrony and conduction patterns in the SAN; however, this work has not addressed the role

of voltage-dependent coupling in influencing pacemaking properties.

Here, we specifically investigate the effects of voltage-dependent gap junction gating in

the SAN. We utilize the theory of weakly coupled oscillators to examine how voltage-gated

conductance affects the robustness of synchrony in 2- and 3-cell networks of SAN cells. In

a pair of two coupled cells, we analyze and interpret the effects of the parameters that

define voltage-dependence of gap junction gating on the robustness of 1:1 phase-locking to

heterogeneity and noise. We then consider how voltage-dependent conductance may influence

a larger network beyond a single pair of cells by studying a three-cell system with both

nearest-neighbor coupling and all-to-all coupling. This allows us to examine the effects of

one cell on a group of coupled cells, as well as the impact of differentially changing frequencies

on the system, which may shed light on the ability of the lead pacing site within the SAN to

shift spatially as in experiments [10,46]. Finally, the voltage dependence of gating appears

to develop on a time scale of hundreds of milliseconds (fig. 3.1), comparable to the time-scale

of the action potential in SAN cells. This suggests that the slow onset of voltage-dependence

may create further complexity in the synchrony of cells coupled by voltage-dependent gap

junctions. In order to account for the non-instantaneous onset of voltage dependence, we

consider the effects of slow voltage-dependent conductance that changes on the same time

scale as the changes to frequency due to coupling.

36



3.2. Sinoatrial Node Cell Model

The three-variable ionic model for sinoatrial node cell electrophysiology by Guevara [26]

was developed by exploiting differences in time scales in order to reduce a prior SAN cell

model by Irisawa and Noma [32]. We consider the Guevara model for its simplicity, and re-

duce it to a single-variable phase model. The original model includes variables for membrane

potential (V ), inactivation gate for the slow inward current Is (f), and potassium channel

activation (p):

dV

dt
= −d∞f(V )̄iS(V )− p(V )̄iK(V )− Il(V ) + Iapp

df

dt
= αf (V )(1− f)− βf (V )f

dp

dt
= αp(V )(1− p)− βp(V )p

The system exhibits periodic behavior in which V fires repeated action potentials with period

≈ 350 ms, while the gating parameters f and p oscillate between 0 and 1 with the same

period. We show the oscillatory behavior of the model in fig. 3.2; in state space, the

trajectories orbit around a stable limit cycle. See Appendix for parameters and function

definitions for the Guevara model. In a pair of cells with membrane potentials Vi and Vj,

gap junctional coupling between two cells is modeled as an applied current for each cell in

the form IC = gj ·(Vj−Vi), where gj is the gap junctional conductance. Thus, the differential

equations for the two cells’ membrane potentials are:

dVi
dt

= −d∞f(Vi)̄iS(Vi)− p(Vi)̄iK(Vi)− IL(Vi) + gj(Vj − Vi)

dVj
dt

= −d∞f(Vj )̄iS(Vj)− p(Vj )̄iK(Vj)− IL(Vj) + gj(Vi − Vj).

We use the form of voltage-dependent gap junctional conductance established by Desplantez

et al. [19]:
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Figure 3.2. The Guevara model for a single cell exhibits periodic behavior.
A: Membrane potential versus time; the cell fires periodic action potentials
with period ≈ 350 ms. B and C: gating variables f and p versus time.

gj = ḡgj,ss(∆V ) = ḡ

(
1− gj,min

1 + exp[A(|∆V | − |Vj,0|)]
+ gj,min

)
where the transjunctional voltage ∆V = Vj − Vi is the difference between the two cells’

membrane potentials. The voltage dependence of gap junctions depends on three parameters

Vj,0, gj,min and A, which determine the sensitivity and average conductance carried by gap

junctions over a range of junctional potentials ∆V (fig. 3.3). Parameter values corresponding

to Cx43 and Cx45 gap junctions are approximated from [19] and listed in Table 3.1. Notably,

the overall voltage-dependence of conductance is steeper in Cx45 gap junctions than in Cx43

gap junctions, as can be observed qualitatively in fig. 3.1.

We normalize the function gj,ss(∆V ) in each case such that its maximum is 1; that is,

there is a maximal conductance of 1 in all cases. In order to investigate questions about
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Table 3.1. Parameter values defining voltage-dependence of conductance for
Cx43 and Cx45 gap junctions. Approximate values from [19].

gj,min Vj,0 A
Cx43 0.26 61.5 0.11229
Cx45 0.17 39 0.093575

Figure 3.3. Gap junctional conductance depends on transmembrane volt-
age with the parameters gj,min, Vj,0, and A defining the function. Panels A,
B, and C respectively show how each parameter modifies the dependence of
conductance on voltage. While Vj,0 primarily determines the width of the
high-conductance window for transmembrane voltage, gj,min determine the
conductance in the tails where transmembrane voltage is very high or low,
and A defines the steepness of transition from the peak to the minimum con-
ductance.

coupling between cells, we incorporate voltage dependence into the voltage-based coupling

term in a model of two (or three) adjacent cells.

3.2.1. Time-dependent gating. Note that in the above, it was assumed that gap

junctional conductance gj,ss changes instantaneously with transjunctional voltage ∆V . Ev-

idence suggests that the coupling function IC = gj∆V for the gap junctions in the heart

depends not only on the transmembrane potential but also depends explicitly on time (fig.

3.1, and [19]). If voltage dependence develops on a time scale comparable to or slower than
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the cells’ intrinsic action potential or the effects of coupling, then the combined voltage de-

pendence and time dependence of coupling may give rise to more complicated dynamics in

the system that cannot be identified by examining voltage dependence alone. Therefore, we

extend the coupling term in our model to take into account the possibility that conductance

develops over time. We assume that there is a steady-state conductance that depends on

transjunctional voltage, i.e., gj,ss(∆V ) as in the previous section. However, we now assume

that the conductance gj approaches gj,ss in a first-order exponential decay process with time

constant τj ≈ 0.01, such that it can be modeled with the following differential equation:

dgj
dt

=
1

τj
(gj,ss − gj).

With two coupled cells, the model consists of six differential equations, and is therefore

difficult to analyze in depth. We use the theory of weakly coupled oscillators to reduce the

dimensionality of the model in order to analyze its behavior more effectively.

3.3. Weakly Coupled Oscillators Theory

Applying the theory of weakly coupled oscillators allows us to analyze the relationship

between intrinsic cell properties and the coupling between cells. In order to apply this theory

to the Guevara model, we reduce the three-dimensional single-cell model to a “phase” model,

consisting of a single differential equation describing the position of the system along its limit

cycle in state space. A system close to, but not on, the limit cycle, is mapped to an asymptotic

phase corresponding to a point on the limit cycle, defined by the phase whose limit is equal

to the limit of the system as time approaches +∞.

First, consider an oscillating cell with a period T . We denote the phase θ1. The phase

of the cell advances with time:

θ1 = t, θ1 ∈ [0, T ).

After time T , phase resets to zero, such that θ1 = t mod T . However, for convenience, we

simply write θ1 = t.
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Generally, heterogeneity in SAN cells’ electrical properties results in a variation in their

frequency of oscillation (∆ω). Therefore, if we consider a second cell with phase θ2 which

has slightly different electrical properties from those of the first cell, the second cell obeys

the model

θ2 = t+ ∆ωt+ φ0

where φ0 is a phase shift depending on the second cell’s initial condition relative to that of

the first cell.

A perturbation to Cell 1 will result in a phase shift that depends on time, which we

denote φ1(t):

θ1 = t+ φ1(t).

We call φ1(t) the relative phase of Cell 1, as this denotes the location of the cell relative to its

unperturbed phase on the limit cycle. If the perturbation is small enough, then the relative

phase will change slowly. Using a multi-scale or “two-timing” approach, we can write the

relative phase as a function of the slow time variable t̃ = εt for small ε (note that ε determines

ḡ, and therefore scales the coupling strength), so that the phase of Cell 1 becomes

θ1(t, t̃) = t+ φ1(t̃).

Similarly, we assume a small perturbation is applied to Cell 2, resulting in a relative phase

φ2 that changes on the slow time-scale t̃:

θ2(t, t̃) = t+ ∆ωt+ φ0 + φ2(t̃)

We also now assume that the heterogeneity in the frequency of Cell 2, ∆ω, is sufficiently

small that ∆ω
ε

is O(1), and therefore we write the equation for θ2 as

θ2(t, t̃) = t+
∆ω

ε
t̃+ φ0 + φ2(t̃).
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The theory of weakly coupled oscillators (see [64] for derivation) allows us to write the

following differential equations governing the dynamics of the relative phasesφ1 and φ2 over

the slow time scale t̃:

dφ1

dt̃
=

1

T

∫ T

0

Z(t+ φ1) · IC(VLC(t+ φ1 + (φ2 − φ1))), VLC(t+ φ1))dt

dφ2

dt̃
=

1

T

∫ T

0

Z(t+ φ2) · IC(VLC(t+ φ2 − (φ2 − φ1))), VLC(t+ φ2))dt+ ∆ω

where Z(θ) denotes the phase response curve (PRC) defining the phase shift of the cell in

response to a delta function-like perturbation; VLC(t) represents the membrane potential V

of a cell at phase t relative to a periodic action potential at steady-state (i.e., along the

unperturbed limit cycle); and IC(Vi, Vj) represents the coupling function defining the effect

of coupling from cell j on cell i (for i, j = 1, 2). Thus, the instantaneous effect of cell

j on cell i is defined by integrating the product of the coupling function IC at each point

VLC along the limit cycle with the phase response curve Z(θ). This relies on the theory of

averaging (see [25]), which allows us to average the system over the period T of the limit

cycle and remove the explicit dependence on the “fast” time variable t. Several methods

exist to compute the PRC; in this case, the PRC was generated in XPP [20] by solving for

the unique T-periodic solution to the adjoint equation for the linear operator representing

the derivative of the phase model with respect to the fast time-scale. Fig. 3.4 shows the

action potential representing one cycle of the oscillation in V versus the phase θ of the period

(fig. 3.4A), and the corresponding phase response curve Z(θ) indicating the sensitivity of

the system to perturbation at each point along the limit cycle (fig. 3.4B).

If the coupling function IC is symmetric, the integral term depends only on the phase

difference ψ = θ2 − θ1. We define the interaction function H(ψ) as the influence exerted on

one cell’s phase by another cell with phase difference ψ, averaged over a limit cycle; that is:
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Figure 3.4. A: characteristic action potential for the Guevara model plot-
ted over the phase θ describing the position of the system around the limit
cycle (period ∼ 375ms). B: phase response curve indicating the sensitivity of
the system at each point along the action potential to a delta-function-like,
infinitesimal perturbation in the positive voltage direction.

H(−ψ) =
dφ1

dt̃
=

1

T

∫ T

0

Z(t+ φ1) · IC(VLC(t+ φ1 + ψ)), VLC(t+ φ1))dt(3.1)

H(ψ) + ∆ω =
dφ2

dt̃
=

1

T

∫ T

0

Z(t+ φ2) · IC(VLC(t+ φ2 − ψ)), VLC(t+ φ2))dt+ ∆ω.

Using the symmetry of H(ψ) and H(−ψ), we then define the function ḡG(ψ) := H(ψ) −

H(−ψ). By subtracting the differential equations this further reduces the system to one

differential equation for the phase difference ψ:

dψ

dt
=
dθ2

dt
− dθ1

dt
=
dφ2

dt
− dφ1

dt
= ḡG(ψ) + ∆ω

That is,

dψ

dt
= ḡG(ψ) + ∆ω.
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The steady states of this equation determine the phase-locking of the system of two oscil-

lators. In pairs of homogeneous SAN cells (∆ω = 0) coupled by gap junctions, there is

generally a stable equilibrium at ψ = 0, corresponding to synchrony, and an unstable equi-

librium at ψ = T/2 corresponding to antiphase. Adding heterogeneity, captured by ∆ω,

essentially shifts G(ψ) vertically, which shifts the stable equilibrium from synchrony towards

a nearby point; this stable equilibrium is referred to as a “1:1 phase-locked” steady state.

Several features of the shape of G(ψ) quantify the robustness of this phase-locked state:

(1) The absolute value of the slope of G(ψ) at synchrony, i.e., |G′(0)|, determines how

close or how far from synchrony the 1:1 phase-locked state will be as heterogeneity

is added.

(2) The maximum absolute value of G(ψ), i.e., maxψ |G(ψ)|, determines how large the

frequency heterogeneity must be to abolish the 1:1 phase-locked steady state.

(3) The value of ψ at which maxψ |G(ψ)| occurs, i.e., ψ(Gmax), measures the states at

which the system will accumulate as heterogeneity is increased.

While G(ψ) provides statistics that measure the robustness of phase-locking to small

heterogeneity, a second measure known as the cross-correlogram for the two oscillators mea-

sures the robustness to random noise. In the presence of additive white noise, the two-cell

system will fluctuate between different states, taking on a variety of phase differences ψ with

frequencies corresponding to the stability of each value of ψ. The probability distribution

that results from this experiment captures the likelihood of the system to take on each phase

shift ψ. This probability distribution, also known as the cross-correlogram and denoted ρ(ψ),

can be calculated explicitly using the parameters in the system (derivation in [64]):

ρ(ψ) =
1

N
eM(ψ)

[
e−αT∆ω − 1∫ T
0
e−M(ψ̄)dψ̄

∫ ψ

0

e−M(ψ̄)dψ̄ + 1

]
,

where

M(ψ) = α

∫ ψ

0

(∆ω +G(ψ̄))dψ̄,
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N is a normalization factor such that
∫ T

0
ρ(ψ)dψ = 1, and α = ε

δ2σ2
ψ

represents the ratio of

the strength of the coupling to the variance of the noise. Since ρ(ψ) depicts the likelihood

for the system to take on each state ψ, we use the value of ρ(0) as a measure of the stability

of synchrony and ρ(T/2) as a measure of the instability of antiphase.

3.3.1. Extension: time-dependent gating. In order to find any potential effects of

time-dependent voltage-gating on synchrony in pairs of SAN cells, we extend the theory of

weakly coupled oscillators to allow for conductance to develop on a slow time-scale com-

mensurate with changes to phase shift due to coupling. We introduce a linear differential

equation with a single time constant to model the conductance gj across the gap junction:

dgj
dt

=
1

τc
(gj,ss − gj)

We then assume that gj changes on the same time scale as the relative phase, and therefore

that, like the differential equations for relative phase of each oscillator, the ODE for conduc-

tance can be averaged over the period. We augment the system of equations (3.1) with an

additional ODE for gj, averaged over the period T :

dφi

dt̃
=

1

T

∫ T

0

Z(t+ φi) · IC(VLC(t+ φi + (φj − φi)), VLC(t+ φi))dt, i, j = 1, 2

dgj

dt̃
=

1

τc

[
1

T

∫ T

0

gj,ss(VLC(t+ φi), VLC(t+ φj))dt− gj
]

Recall that the differential equation for φi depends on gj through the coupling current,

IC = gj · ∆V . This system of three equations can then be reduced to a system of two

equations for the phase difference ψ = φ2 − φ1 and the conductance gj:

dψ

dt̃
= gj(H(ψ)−H(−ψ))

dgj

dt̃
=

1

τc
(gj,∞(ψ)− gj)

where gj,∞ is the average of gj,ss(∆V ) over a cycle of the action potential:
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gj,∞(ψ) =
1

T

∫ T

0

gj,ss(VLC(t+ ψ)− VLC(t))dt

and H is defined as in eq. (3.1). We can analyze the phase plane of the two-variable system

ψ and gj in the time-dependent conductance case to ascertain how time-dependent voltage

gating affects systems of two weakly coupled oscillators in this sinoatrial node cell model.

3.4. Results

We apply several protocols involving systems of two and three coupled cells to evaluate

the differences in robustness of phase locking to frequency heterogeneity and Gaussian noise.

3.4.1. Two Symmetrically Coupled SAN Cells. The most basic system in which

to apply the theory of weakly coupled oscillators to a model of SAN cells is a pair of cells

with symmetric coupling.

First, we investigate the role of each gap junction gating parameter (gj,min, A, and Vj,0)

on the shape of the coupling function G(ψ) = dψ
dt

for a pair of two homogeneous SAN cells.

Values of ψ where G(ψ) = 0 correspond to 1:1 phase-locked states for the pair of cells. In all

cases with two homogeneous cells, we observe two steady states, corresponding to synchrony

and antiphase. The synchronous steady state is the only stable equilibrium for the paired

system; antiphase is consistently an unstable equilibrium (figure 3.5).

We examine how the voltage dependence of gap junctional coupling impacts the robust-

ness of synchrony, or 1:1 phase locking, in the presence of small frequency heterogeneity

(∆ω) and noise. Since the dynamics of phase difference ψ are governed by the differential

equation

dψ

dt
= ḡG(ψ) + ∆ω,

in the presence of heterogeneity the equilibria for ψ occur at ψ∗ where

G(ψ∗) = −∆ω

ḡ
.
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Several metrics can be used to quantify the degree of “robustness” of phase locking as a

stable steady state of a system of ordinary differential equations, and we evaluate the effects

of parameters defining voltage dependence of gap junction conductance on each of these

metrics. First, we note that a slight heterogeneity ∆ω in the frequencies of the two cells

shifts dψ
dt

vertically, therefore shifting the equilibria for ψ and, if the heterogeneity is large

enough, eliminating one or more equilibria. Therefore, one metric of the robustness of phase-

locking to heterogeneity is the maximum of G(ψ), as this measures the size of heterogeneity

necessary to eliminate the 1:1 phase-locked steady state. Second, since the equilibrium point

at synchrony (G(0) = 0) is stable if dG
dψ

∣∣
0
< 0, robustness of the synchronous steady state

can be thought of as the magnitude of the negative slope at this point, i.e., −dG
dψ

∣∣
0
. This

indicates how close to synchrony the steady state will remain as small-amplitude frequency

heterogeneity ∆ω is added to one cell. Finally, a third, related metric is ψ(Gmax), the phase

at which G attains its maximum; this measures the phase shift that the cells will approach as

heterogeneity is added. If ψ(Gmax) is close to 0 or T , the pair will remain close to synchrony

even as heteroeneity is added, just before the 1:1 phase-locking is lost; if ψ(Gmax) is close to

T/2, on the other hand, small heterogeneity will shift the pair of cells toward antiphase.

The dependence of the function G(ψ) on gap junctional gating parameters are summa-

rized in figures 3.5 and 3.6. Increasing gj,min, the minimal conductance at high membrane

potential difference ∆V , increases the amplitude of G(ψ) and shifts the phase ψ(Gmax) at

which the maximum occurs slightly toward antiphase, and increases the slope of G(ψ) at

antiphase – thereby increasing the instability of the unstable equilibrium – but does not

affect the slope at synchrony |G′(0)| (fig. 3.5A, fig. 3.6A-C). This is consistent with the

fact that increased gj,min enhances the gap junctional conductance for cell pairs at large

membrane potential differences ∆V , but does not affect the conductance for pairs of cells

with small membrane potential differences. Since gap junctional conductance acts as a syn-

chronizing force, higher minimal conductance is expected to increase the robustness of 1:1

phase-locking in response to heterogeneity and to destabilize antiphase; however, the local
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stability of synchrony is not affected since changes to gj,min do not affect conductance when

∆V is near zero.

As |Vj,0| approaches zero, the relative width of the high-conductance window of gj,ss(∆V )

narrows. This results in decreased amplitude of G(ψ) and reduced slope at antiphase

G′(T/2), representing a reduction in the instability of antiphase. Shifting Vj,0 towards zero

also slightly reduces the slope at synchrony (fig. 3.5B, fig. 3.6D-F). The reduced amplitude,

decreased steepness at synchrony and decreased slope at antiphase are expected, as changing

Vj,0 toward zero reduces the range of transjunctional voltage ∆V over which conductance is

high, and therefore reduces the coupling conductance for pairs of cells with membrane poten-

tial differences. Pairs of cells at different membrane potentials therefore exert less coupling

current on each other, and are thus less likely to shift towards synchrony.

Increasing A represents a steeper drop-off in the conductance gj,ss(∆V ) as |∆V | increases.

In our model, increasing A reduces the amplitude of G(ψ) and shifts the phase ψ(Gmax) at

which the maximum occurs closer to synchrony, widening the range of ψ over whichG ≈ Gmax

so that the shape of G(ψ) becomes more square pulse-like (fig. 3.5C, fig. 3.6G-I). Increased

A also results in reduced slope at antiphase, and slightly increasd magnitude of the slope at

synchrony |G′(0)|. These trends are expected: increased A decreases the conductance for cell

pairs at very different membrane potentials, which will decrease the instability of antiphase

and reduce the amplitude of G(ψ). However, increasing A also increases the conductance for

cell pairs at similar membrane potentials, i.e., small |∆V |, which increases the magnitude of

the slope at synchrony, |G′(0)|.

The relationships between each parameter and key metrics ofG(ψ), namelyGmax, ψ(Gmax),

and |G′(0)|, are captured in fig. 3.6. Together, the three parameters Vj,0, gj,min and A shift

the function, including changing the slope of G at synchrony and antiphase, the amplitude

of G and the point at which the maximum is achieved. However, within a physiological

parameter range these changes do not alter the number of steady states or their stability.
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Figure 3.5. Effects of voltage-dependent gap junction gating parameters on
G(ψ) phase diagram for the phase difference between two coupled cells. The
three parameters gj,min, Vj,0, and A each shift the function G(ψ) by changing
the height of the maximum value and the phase at which this maximum occurs.
Parameters change the amplitude of G and the slope of G at 0 and at T/2,
modifying the stability of synchrony and the instability of antiphase. However,
within a physiological parameter range these changes do not alter the number
of steady states or their stability.

The cross-correlogram ρ(ψ) for the two-cell system, as described in Schwemmer and

Lewis [64], describes the expected phase differences in a coupled system in the presence of

Gaussian random noise. In fig. 3.7, we show the effects of each voltage-gating parameter on

the shape of the cross-correlogram with α = 0.2. Changes to each of the three parameters

gj,min, Vj,0 and A affect the maximum of ρ at synchrony (ψ = 0, T ), as well as the minimum at

antiphase (ψ = T/2) and the steepness of the function between the minimum and maxima.

These effects are shown in fig. 3.7. As the minimum conductance gj,min increases, ρ(ψ)

becomes steeper, such that the maxima at ψ = 0, T are higher and the minimum at ψ = T/2

is lower (fig. 3.7A). The increased maximum of ρ at synchrony is expected, since gj,min

increases conductance between the two cells, which increases the propensity for the cells’
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Figure 3.6. Effects of the three voltage-dependent gating parameters gj,min,
Vj,0, and A on metrics of robustness of 1:1 phase-locking in a pair of cells.
Amplitude Gmax = maxψ(G(ψ)) indicates the size ∆ω of frequency hetero-
geneity that will abolish the steady state; the slope |G′(0)| at the homoge-
neous stable steady state indicates how close to synchrony the steady state
will remain as small-amplitude heterogeneity is added to one cell; the loca-
tion ψ(Gmax) = ψ∗ at which the maximum maxψ(G(ψ)) is achieved (that is,
G(ψ∗) = maxψ(G(ψ))) predicts the most commonly visited phase differences
of cells as frequency heterogeneity is increased.

membrane potentials to converge toward each other. As the relative width |Vj,0| of the high-

conductance window of the voltage-dependence function narrows (|Vj,0| → 0), the maximum

of ρ(ψ) near synchrony decreases, but the minimum near antiphase increases (fig. 3.7B).

These trends are again expected, as reducing |Vj,0| decreases the overall conductance between

the pair of cells, and therefore destabilizes their synchrony and phase-locking. As the relative

steepness A of the voltage-gating function increases, ρ changes toward lower maxima at

ψ = 0, T and a higher minimum at ψ = T/2 (fig. 3.7C). This can be explained by the fact

that increasing A reduces the overall conductance between the pair of cells, especially when

∆V is large.
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Figure 3.7. Cross-correlograms summarize the stability of various phase
shifts in a pair of two coupled cells under random noise. The three parameters
defining voltage-dependent gap junction gating Vj,0, gj,min and A each shift
the cross-correlogram to be steeper and flatter at different phases, changing
the relative stability of synchrony and antiphase and nearby regions of phase
space. However, there are no notable qualitative changes in the stability or
number of steady states within a physiological range of parameters.

The relationships between each parameter and the minima and maxima of ρ are quantified

in figure 3.8. As the minimum conductance gj,min increases, ρmax (stability of synchrony)

increases and ρmin (instability of antiphase) decreases (fig. 3.8A, D). As the width |Vj,0|

increases, similarly, ρmax increases and ρmin decreases (fig. 3.8 B, E). As the steepness A of

gating increases, the maximum ρmax decreases and the minimum ρmin increases (fig. 3.8 C,

F).

The shape of the cross-correlogram does not change markedly across variations in gating

parameters. Although the voltage-dependence changes the relative sizes of the maxima at

ψ = 0 and T and minimum at ψ = T/2, the qualitative shape of the cross-correlogram does

not change. Hence, we predict that voltage-dependent gating will not change the qualitative

behavior of a two-cell coupled system in response to random channel noise affecting each

cell’s membrane potential.
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Figure 3.8. As each parameter changes, the maxima and minima of ρ(ψ),
near synchrony and antiphase respectively, shift. As gj,min increases, ρ(ψ) be-
comes steeper, such that the maxima at ψ = 0, T are higher and the minimum
at ψ = T/2 is lower. Similarly, as Vj,0 → 0, the slope of ρ(ψ) between 0 and
T/2 and between T/2 and T becomes steeper. As A increases, ρ shifts towards
lower maxima at ψ = 0, T and a higher minimum at ψ = T/2.

Results from all of our simulations of two SAN cells with symmetric gap junctional

coupling, captured in figures 3.5, 3.6, 3.7 and 3.8, indicate that each voltage gating parameter

shifts the robustness of phase-locking in a pair of symmetrically coupled cells. Based on the

voltage-gating parameters for Cx45 and Cx43 gap junctions, we expect synchrony in cells

coupled with Cx45 gap junctions to be less robust than in cells coupled with Cx43 gap

junctions. However, in all of our results, synchrony remains the only stable steady state

and antiphase remains the only unstable steady state. None of the the three parameters

controlling voltage-gated coupling alter the qualitative behavior, i.e. the number or stability

of steady states, of the dynamical system.

3.4.2. Three SAN Cells with Symmetric Coupling. It is possible that the minimal

two-cell case does not fully capture the effects of different voltage-gating properties of gap

junctions on systems of weakly coupled oscillating cells, and that these effects only arise
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in systems of three or more cells. Therefore, we investigate, in a network of three cells,

how the parameters determining voltage-dependent gap junction conductance influence the

robustness of phase-locking. For completeness, given that the sinoatrial node contains a

spatially complex mesh of cells, we consider both the setup in which each cell is coupled to

every other cell and in which cells are arranged in a linear array with only nearest-neighbor

coupling (see next section).

The system of three cells generates two phase differences, ψ1 = θ2− θ1 and ψ2 = θ3− θ2.

As in the two-cell case, each cell’s phase is governed by a differential equation defined by

the convolution of the phase response curve and the coupling current; in the three-cell

case, however, the coupling current is either the average of the coupling current from the

remaining two cells (in the case of all-all coupling) or from the adjacent cell(s) (nearest-

neighbor coupling). The differential equations governing the phase differences, as in the

two-cell case, arise from subtracting the differential equations for each individual phase. We

analyze the dynamics of the two phase differences ψ1 and ψ2 using a two-dimensional phase

plane, analogous to the G function in the two-cell model. The phase plane identifies steady

states and the sign of the derivatives of each variable in each region of state space. We show

phase planes for a default parameter set (gj,min = 0.2, Vj,0 = 50, A = 0.1) and demonstrate

how the phase plane changes as frequency heterogeneity is added to cell 3. We then use

these results to analyze how the voltage-dependence of gap junctional coupling influences

the robustness of phase-locking in the three-cell network.

3.4.2.1. Three SAN Cells with All-to-all Coupling. We first consider a system of three

cells with all-all coupling, where one cell has the potential for a slight frequency heterogeneity

∆ω. The equations for each cell are the following:
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dφ1

dt̃
=

1

T

(
1

2

∫ T

0

Z(t+ φ1) · IC(VLC(t+ φ1 + (φ2 − φ1)), VLC(t+ φ1))dt

+
1

2

∫ T

0

Z(t+ φ1) · IC(VLC(t+ φ1 + (φ3 − φ1)), VLC(t+ φ1))dt

)
dφ2

dt̃
=

1

T

(
1

2

∫ T

0

Z(t+ φ2) · IC(VLC(t+ φ2 − (φ2 − φ1)), VLC(t+ φ2))dt

+
1

2

∫ T

0

Z(t+ φ1) · IC(VLC(t+ φ2 + (φ3 − φ2)), VLC(t+ φ2))dt

)
dφ3

dt̃
=

1

T

(
1

2

∫ T

0

Z(t+ φ3) · IC(VLC(t+ φ3 − (φ3 − φ2)), VLC(t+ φ3))dt

+
1

2

∫ T

0

Z(t+ φ3) · IC(VLC(t+ φ3 − (φ3 − φ1)), VLC(t+ φ3))dt+ ∆ω

)

By subtracting and using symmetry, and observing that θ3 − θ1 = ψ1 + ψ2, we obtain the

differential equations for phase differences ψ1 = θ2 − θ1 and ψ2 = θ3 − θ2:

dψ1

dt̃
=

1

2
(G(ψ1) +H(−ψ2)−H(−(ψ1 + ψ2)))

dψ2

dt̃
=

1

2
(G(ψ2) +H(ψ1 + ψ2)−H(ψ1)) + ∆ω

Fig. 3.9A depicts the (ψ1, ψ2) phase plane for the default parameter set, with identical

cells (∆ω = 0). Note that due to the periodicity of both phase differences, the flow is in fact

on a torus rather than a plane. Nullclines are shown in blue (ψ1) and red (ψ2). Note that

points on the ψi nullcline where ψi is equal to zero or one correspond to synchrony between

a particular pair of cells. For example, dψ1

dt
= 0 when ψ1 = 0, because along this line,

φ1 = φ2, and therefore the coupling current from φ1 to φ2 (and vice versa) is zero. Steady

states are depicted in fig. 3.9A with filled circles (stable) and open circles (unstable); note

that all four stable steady states are actually the single synchronous steady state. Arrows
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depict the direction of flow in each region of the torus. Three trajectories are shown, all of

which approach synchrony. In panel B of fig. 3.9, we show the time-course of the yellow

trajectory in panel A, with initial conditions (0.2, 0.4). Similarly, fig. 3.9 C shows the

time-course for the green trajectory in A, with initial conditions (0.7, 0.4). In both B and C,

after several cycles of oscillation corresponding to several cellular action potentials, all three

cells synchronize; this is shown in the phase plane by the fact that each of the trajectories

approaches one of the four corners of the phase plane, all of which correspond to synchrony.

As heterogeneity ∆ω is added, the ψ2 nullcline shifts (fig. 3.10), moving the steady states

for the system. The unique stable steady state remains close to synchrony, but shifts slightly

towards positive ψ2 as the intrinsic frequency of cell 3 increases. Thus, as cell 3’s frequency

accelerates slightly, the system approaches a phase-locked state in which cells 1 and 2 are in

synchrony, and cell 3 is phase-locked at a fixed, phase-advanced position relative to cells 1

and 2. Fig. 3.10 shows the changes to the phase plane over a range of ∆ω from 0 to 21.2.

Blue curves indicate the ψ1 nullcline, and red curves indicate the ψ2 nullclines for each value

of ∆ω (dash-dot curve corresponds to ∆ω = 0). At sufficiently high ∆ω, two of the unstable

steady states vanish in a saddle-node bifurcation (SNB) as shown in fig. 3.10 with dashed

curve (∆ω = 12). As heterogeneity is increased beyond this point, a second SNB occurs

and eliminates the stable steady states (shown in fig. 3.10 with dotted curve, ∆ω = 21.2).

The value of ∆ω at the second SNB, denoted ∆ωSNB below, provides the threshold for a

frequency heterogeneity in one cell to desynchronize the third, heterogeneous cell from the

two identical cells.

In fig. 3.11, we show the phase plane and corresponding trajectories with a sufficiently

large heterogeneity to eliminate the steady states. Fig. 3.11A depicts the phase plane

for ∆ω = 21.2; blue curves denote the ψ1 nullcline and red curve, the ψ2 nullcline. The

heterogeneity shifts the ψ2 nullcline sufficiently so that there are no equilibria. Yellow and

green trajectories in fig. 3.11A are those with initial conditions (0.2, 0.4) and (0.4, 0.7) as in

fig. 3.9A. In the absence of a stable equilibrium, the third cell fails to synchronize with the
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Figure 3.9. A: The phase plane for two phase differences ψ1 = θ2 − θ1

and ψ2 = θ3 − θ2 for standard parameters gj,min = 0.2, Vj,0 = 0.5, A = 0.2.
Nullclines are shown in blue (ψ1) and red (ψ2). Open and filled circles indicate
unstable and stable steady states. Trajectories with initial conditions (0.2, 0.4),
(0.4, 0.6), and (0.7, 0.4) are shown in yellow and green (A) with arrowheads
indicating the direction of flow. B: corresponding time-course for trajectory
with initial condition (0.2, 0.4) as shown in yellow and green trajectories in
panel A. After several action potentials, all three cells synchronize. C: time-
course for trajectory with initial condition (0.7, 0.4), as in green trajectory in
A. As in B, the three cells synchronize after a sufficient amount of time.

two identical cells. However, cells 1 and 2 approach synchrony over time, as demonstrated

by the fact that the yellow and green trajectories in fig. 3.11A approach vertical lines at

ψ1 = 0, 1 over time. The phase of the third cell slowly oscillates around the two phase-

locked, identical cells, exhibiting the phenomenon known as phase walkthrough. Rather

than reaching a synchronous equilibrium, the trajectories exhibit phase walk-through. The

time courses corresponding to yellow and green trajectories are shown in fig. 3.11B and C,

respectively. In both panels B and C, the blue and red curves representing time-courses for

cells 1 and 2 synchronize after several cycles, but the third cell (yellow) does not phase-lock

with the pair. The system of three cells does not approach a phase-locked steady state over

time.
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Figure 3.10. The phase plane for two phase differences ψ1 = θ2 − θ1 and
ψ2 = θ3 − θ2 for standard parameters. Intersections of red and blue nullclines
indicate stable and unstable phase-locked states. As heterogeneity of the third
cell ∆ω increases from 0 to 21.2 (red nullclines: ∆ω = 0 [dash-dot curve], 4, 8,
12, 16, 20, 21.2), the system undergoes a saddle-node bifurcation in which two
of the unstable steady states disappear, but a stable phase-locked equilibrium
remains (dashed curve, ∆ω = 12). As ∆ω continues to increase, there is a
second saddle-node bifurcation at which the third cell ceases to phase-lock
with the identical cell pair (dotted curve, ∆ω = 21.2).

We are interested in the relationship between voltage gating parameters and synchrony.

In fig. 3.12 we investigate how the three voltage-gating parameters V0, gj,min and A affect the

threshold ∆ωSNB at which the phase-locked steady state is eliminated. As the parameters

of voltage gating change they shift the phase plane. As gj,min increases, the curvature of the

nullclines increases, but the number of steady states remains unchanged and their locations

do not change (fig. 3.12A). Similarly, as Vj,0 approaches zero (fig. 3.12B) and as A increases
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Figure 3.11. A: The phase plane for two phase differences ψ1 = θ2 − θ1

and ψ2 = θ3 − θ2 for standard parameters gj,min = 0.2, Vj,0 = 0.5, A = 0.2
and ∆ω = 21.2. Nullclines are shown in blue (ψ1) and red (ψ2). There
are no steady states, as indicated by the lack of intersections of red and blue
nullclines. Trajectories with initial conditions (0.2, 0.4) and (0.7, 0.4) are shown
in yellow and green with arrowheads indicating the direction of flow (A). Due
to the heterogeneity of φ3, the cells do not synchronize over time, although
the pair of cells 1 and 2 approach synchrony (vertical blue lines at ψ1 = 0, 1).
B: corresponding time-course for trajectory with initial condition (0.2, 0.4) as
shown in yellow and green trajectories in panel A. Cells 1 and 2 (blue and red)
synchronize after several cycles, while cell 3 (yellow) does not phase-lock with
the pair. C: time-course for trajectory with initial condition (0.7, 0.4), as in
green trajectory in A. As in B, the three cells do not synchronize over time,
but the pair of cells 1 and 2 (blue and red) do synchronize.

(fig. 3.12C), the curvature of each nullcline is reduced but the number and location of steady

states remain the same.

As heterogeneity ∆ω of the third cell increases from zero, the system undergoes a saddle-

node bifurcation whereby the stable equilibrium is abolished. Changes to the nullclines

influence the threshold for the frequency shift ∆ω in the third cell necessary to desynchro-

nize from the homogeneous pair and undergo phase walk-through. The threshold ∆ωSNB
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therefore changes depending on each parameter, and can be considered a measure of ro-

bustness of the phase-locked, stable equilibrium state for the three-cell system. As gj,min

increases, ∆ωSNB increases (fig. 3.12D); this is expected, as increased gj,min increases the

coupling between cells at very different voltages, acting to move cells towards synchrony.

As |Vj,0| increases, ∆ωSNB increases (fig. 3.12E), which is also consistent with our expec-

tations, as increased |Vj,0| means the window of high conductance widens with respect to

transjunctional potential. This broader range of high conductance also moves cells towards

synchrony, and therefore increases the size of heterogeneity necessary to desynchronize the

network. Finally, as A increases, ∆ωSNB decreases slightly (fig. 3.12F), because increased

A diminishes the “tails” of the voltage dependent conductance gj,ss, reducing the magnitude

of coupling for cells at different voltages. Although both nullclines shift slightly as a result

of changes to the gating parameters, changing the robustness of phase-locking, there is no

qualitative change in behavior to the overall phase plane.

We consider the possibility that one role of specific types of gap junctions in the SAN,

where heterogeneous input from the peripheral nervous system modulates individual cells’

frequencies, may be to modulate the effects of cells of one freqeuency on cells of a different

frequency. The effects of a third cell of a different frequency on the oscillations of a pair of

synchronized, identical cells can be assessed by finding the period of time over which the

third cell “walks through” the phase of the two-cell pair and the average effects of the third

cell’s input on the frequencies of the pair over this slow walk-through period (figure 3.13).

In fig. 3.13 we examine how the parameters of voltage gating influence (1) the period of a

third cell’s walk-through with respect to the period of the pair of identical cells and (2) the

average effects of the third cell on the frequency of the pair. Each parameter shifts the period

and average effect of the third cell monotonically: while increasing |Vj,0| and gj,min increase

both the period and influence of the third cell, increasing A generally diminishes the period

and the impact of the third cell. Overall, a third cell has a greater influence in cells coupled

with Cx43 gap junctions than in cells coupled with Cx45 gap junctions. However, there is
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Figure 3.12. A-C: effects of each parameter Vj,0, gj,min and A on the phase
plane for phase differences in a three-cell all-to-all coupled system. As gj,min
increases, the curvature of the nullclines increases, but the number of steady
states remains unchanged and their locations do not change. Similarly, as Vj,0
approaches zero and as A increases, the curvature of each nullcline is reduced
but the number and location of steady states remain the same. D-F: As
heterogeneity ∆ω of the third cell increases from zero, the system undergoes
a saddle-node bifurcation whereby one of the steady states is abolished. The
threshold ∆ωSNB changes depending on each parameter: as gj,min increases,
∆ωSNB increases (D); as |Vj,0| increases, ∆ωSNB increases (E); as A increases,
∆ωSNB decreases (F).

no difference in the qualitative shape of the relationship between heterogeneity, period, and

phase effect of a third cell between the two types of gap junctions.

3.4.2.2. Three SAN Cells with Nearest-neighbor Coupling. Cells in the SAN are coupled

with surrounding cells only, and it is possible that a network of three cells with nearest-

neighbor coupling captures the important dynamics of the effects of gap junctions more

effectively than does a network with all-to-all coupling.

As with all-all coupling, we use the theory of weakly coupled oscillators to construct

differential equations for the three cells coupled in a nearest-neighbor arrangement, with φ2
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Figure 3.13. The frequency difference ∆ω between one cell and a pair of
identical cells influences the frequencies of the homogeneous pair. Upper left:
as the frequency shift increases, the period over which the third cell makes a
full orbit relative to the period of the pair decreaes. Upper right, lower left
and lower right: for a fixed intermediate frequency shift ∆ω = 60ε, each of
the parameters defining voltage-dependent conductance influences the phase
walk-through period.

as the central cell, and where φ3 has the potential for a slight frequency heterogeneity ∆ω.

The equations for each cell are the following:

dφ1

dt̃
=

1

T

∫ T

0

Z(t+ φ1) · IC(VLC(t+ φ1 + (φ2 − φ1)), VLC(t+ φ1))dt

dφ2

dt̃
=

1

T

(
1

2

∫ T

0

Z(t+ φ2) · IC(VLC(t+ φ2 − (φ2 − φ1)), VLC(t+ φ2))dt

+
1

2

∫ T

0

Z(t+ φ2) · IC(VLC(t+ φ2 + (φ3 − φ2)), VLC(t+ φ2))dt

)
dφ3

dt̃
=

1

T

(∫ T

0

Z(t+ φ3) · IC(VLC(t+ φ3 − (φ3 − φ2)), VLC(t+ φ3))dt+ ∆ω

)
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which gives rise to the differential equations for phase differences ψ1 = θ2−θ1 and ψ2 = θ3−θ2:

dψ1

dt̃
= −H(ψ1) +

1

2
(H(−ψ1) +H(−ψ2))

dψ2

dt̃
= H(−ψ2)− 1

2
(H(−ψ2) +H(−ψ1)) + ∆ω

As above in the all-to-all coupling scenario, we first examine the phase plane with default

parameters (gj,min = 0.2, Vj,0 = 50, A = 0.1) to identify the steady states of the system and

the overall flow of trajectories. The phase plane is shown in fig. 3.14A; nullclines are shown in

blue (ψ1) and red (ψ2). As with all-all coupling, there is one stable equilibrium, corresponding

to synchrony among the three cells. However, the unstable equilibria are slightly different

between the two coupling arrangements (compare fig. 3.9A with fig. 3.14A). In fig. 3.14A,

we show the phase plane and yellow and green trajectories correpsonding to initial conditions

of (0.2, 0.4) and (0.4, 0.7). The time courses for the trajectories labeled in A are shown in

fig. 3.14B and C. In the phase plane, both trajectories approach synchrony; the time-courses

confirm this, as the three cells synchronize after a sufficient time interval.

As with all-all coupling, the steady states in the nearest-neighbor coupling arrangement

are eliminated as the heterogeneity ∆ω increases. In fig. 3.15A we show the phase plane

with default parameters and ∆ω = 23, sufficiently large to eliminate the phase-locked steady

state. There are no equilibria, evident by the absence of intersections of the red and blue

nullclines in fig. 3.15A. In fig. 3.15B and C, we show the time-courses for trajectories shown

in yellow (B) and green (C) in panel A. Notably, the three cells do not synchronize over

time, although the pair of identical cells (cells 1 and 2) converges toward the ψ1 nullcline.

Next, we use the phase plane to consider the effects of each voltage-dependent conduc-

tance parameter on the relationship between heterogeneity ∆ω and the nullclines for phase

differences ψ1 and ψ2 in a system of three coupled cells with nearest-neighbor coupling (figure

3.16). In the nearest-neighbor coupling arrangement there is one less global steady state than

with all-to-all coupling. However, the qualitative results in the nearest-neighbor scenario are
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Figure 3.14. A: The phase plane for two phase differences ψ1 = θ2 − θ1

and ψ2 = θ3 − θ2 for standard parameters gj,min = 0.2, Vj,0 = 0.5, A = 0.2.
Nullclines are shown in blue (ψ1) and red (ψ2). Open and filled circles in-
dicate unstable and stable steady states. Trajectories with initial conditions
(0.2, 0.4), (0.4, 0.6), and (0.7, 0.4) are shown in yellow and green with arrow-
heads indicating the direction of flow (A). B: corresponding time-course for
trajectory with initial condition (0.2, 0.4) as shown in yellow and green trajec-
tories in panel A. After several action potentials, all three cells synchronize.
C: time-course for trajectory with initial condition (0.7, 0.4), as in green tra-
jectory in A. As in B, the three cells synchronize after a sufficient amount of
time.

very similar to those in the all-to-all coupling condition. As each parameter is varied the

steepness of nullclines changes slightly (fig. 3.16A-C) but the number and location of steady

states remain unchanged.

Furthermore, as the parameters change, the threshold for heterogeneity ∆ωSNB at which

steady states disappear via a saddle-node bifurcation changes. As in the all-all coupling case,

when gj,min increases in the nearest-neighbor coupling network, ∆ωSNB increases (fig. 3.16D);

this is expected, as increased gj,min increases the coupling between cells at very different

voltages, acting to move cells towards synchrony. As |Vj,0| increases, ∆ωSNB increases (fig.
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Figure 3.15. A: The phase plane for two phase differences ψ1 = θ2 − θ1

and ψ2 = θ3 − θ2 for standard parameters gj,min = 0.2, Vj,0 = 0.5, A = 0.2
and ∆ω = 23. Nullclines are shown in blue (ψ1) and red (ψ2). There are
no global equilibria. Trajectories with initial conditions (0.2, 0.4), (0.4, 0.6),
and (0.7, 0.4) are shown in yellow and green with arrowheads indicating the
direction of flow (A). B: corresponding time-course for trajectory with initial
condition (0.2, 0.4) as shown in yellow and green trajectories in panel A. After
several action potentials, the cells do not synchronize. C: time-course for
trajectory with initial condition (0.7, 0.4), as in green trajectory in A. As in
B, the three cells do not synchronize over time.

3.16E), which is also consistent with our expectations, as increased |Vj,0| means the window

of high conductance widens with respect to transjunctional potential. This broader range

of high conductance also moves cells towards synchrony, and therefore increases the size of

heterogeneity necessary to decouple the network. Finally, as A increases, ∆ωSNB decreases

slightly (fig. 3.16F), because increased A diminishes the “tails” of the voltage dependent

conductance gj,ss, reducing the magnitude of coupling for cells at different voltages. As with

all-all coupling, the robustness of phase-locking changes as the nullclines shift slightly due

to changes to the gating parameters, but there is no qualitative change in behavior to the

overall phase plane.

We explore the effects of gating parameters on the period of phase-walkthrough when

the third “rogue” cell uncouples, and on the average effect of the third cell on the frequency
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Figure 3.16. A-C: effects of each parameter Vj,0, gj,min and A on the phase
plane for phase differences in a three-cell nearest-neighbor coupled system. As
gj,min increases, the curvature of the nullclines increases, but the number of
steady states remains unchanged and their locations do not change. Similarly,
as Vj,0 approaches zero and as A increases, the curvature of each nullcline is
reduced but the number and location of steady states remain the same. D-F:
As heterogeneity ∆ω of the third cell increases from zero, the system undergoes
a saddle-node bifurcation whereby one of the steady states is abolished. The
threshold ∆ωSNB changes depending on each parameter: as gj,min increases,
∆ωSNB increases (D); as |Vj,0| increases, ∆ωSNB increases (E); as A increases,
∆ωSNB decreases (F).

of the two phase-locked cells, as in the all-all coupling case above, in figure 3.17. As in

all-all coupling, the difference between Cx45 and Cx43 gap junctions primarily has the effect

of modifying the overall strength of coupling between pairs of cells. The shapes of the

relationships between each parameter and the phase walk-through period are very similar in

the two different coupling arrangements. As in the all-all coupling case, there is no difference

in the qualitative shape of the relationship between heterogeneity, period, and phase effect

of a third cell between the two types of gap junctions.

Taken together, the results of our phase plane analysis and phase-walkthrough experi-

ments suggest that the differences between voltage gating parameters across different types
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Figure 3.17. The frequency difference ∆ω between one cell and a pair of
identical cells influences the frequencies of the homogeneous pair. Upper left:
as the frequency shift increases, the period over which the third cell makes a
full orbit relative to the period of the pair decreaes. Upper right, lower left
and lower right: for a fixed intermediate frequency shift ∆ω = 60ε, each of
the parameters defining voltage-dependent conductance influences the phase
walk-through period.

of gap junction times primarily only alter the overall magnitude of conductance between the

two cells, but do not fundamentally alter the dynamics of phase-locking between pairs or

networks of cells.

3.4.2.3. Three-Cell Simulations: lead site shift or synchrony shift. The results of our

phase plane analysis do not indicate a significant role of voltage dependence of gap junctional

conductance on synchrony aside from reducing the overall robustness of phase-locking be-

tween cells. The sinoatrial node primarily contains Cx45 gap junctions, which have steeper

voltage-dependence and lower overall conductance as compared with Cx43 gap junctions,

which are present in higher concentrations in the atrium and myocardium. We explore the

effects of voltage dependence by simulating systems of two and three oscillators coupled by
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Cx43 and Cx45 gap junctions, under varying conditions that induce a shift in lead site or a

shift in the frequency of synchronized cells.

In figure 3.18, we simulate two cells – each reduced to a phase model – coupled by

Cx43 and Cx45 gap junctions. We change the intrinsic frequency of cell 2 linearly over an

interval of t = 100 from ≈ 10% faster than cell 1 to ≈ 10% slower than cell 1, mimicking

an experiment reducing sympathetic tone or increasing parasympathetic tone to cell 2 (fig.

3.18A). Cells 1 and 2 begin in synchrony at t = 0, but diverge as the higher frequency of

cell 2 drives the stable phase-locked state away from synchrony (fig. 3.18B). At t = 50, the

frequency of cell 2 is lower than that of cell 1; however, the phase shift remains positive, i.e.,

cell 2 stays the lead pacing cell, until t = 54. In both cases, the lead site shifts from cell 2 to

cell 1 at t ≈ 54, at which cell 1 becomes the leading pacemaker (fig. 3.18B). After t ≈ 80, the

cells desynchronize again, and phase shift oscillates for both Cx45 and Cx43 gap junctions.

In Cx45 gap junctions, the two cells are phase-locked for a shorter range of time (from t ≈ 25

to t ≈ 75) than for Cx43 gap junctions ((from t ≈ 5 to t ≈ 75). Most importantly, however,

fig. 3.18 demonstrates that the voltage-dependence parameters that distinguish Cx43 from

Cx45 gap junctions do not affect the qualitative process of lead pacemaker shift in a pair of

two coupled cells.

In figure 3.19, we expand the system to three cells coupled in a nearest-neighbor arrange-

ment by Cx43 and Cx45 gap junctions. We simulate the process of a gradual reduction

in sympathetic tone or an increase in parasympathetic tone, wherein cells 1 and 2 remain

identical and at constant frequency throughout the simulation but the intrinsic frequency

of cell 3 changes over a period of t = 100 from ≈ 5% faster than the cell 1-cell 2 pair to

≈ 5% slower than the pair (fig. 3.19A). In fig. 3.19B, red curves depict the phase difference

between cells 3 and 2, while blue curves depict the phase difference between cells 2 and 1.

Solid lines represent cells coupled with Cx45 gap junctions, whereas dashed lines represent

cells coupled with Cx43 gap junctions. Cells begin in synchrony at t = 0, but quickly shift

to a 1:1 phase-locked state. From t = 0 until t ≈ 54, in both cases, ∆φ32 > ∆φ21 > 0,
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Figure 3.18. Two cells coupled by Cx43 and Cx45 gap junctions. A: fre-
quency of cell 1 remains constant over the simulation; the intrinsic frequency
of cell 2 changes over a period of t = 100 from slightly faster than cell 1 to
slightly slower than cell 1. B: red curve depicts the phase difference between
two cells coupled by Cx43 gap junctions, while the blue curve depicts the
phase difference between two cells coupled by Cx45 gap junctions. In both
cases, lead site shift occurs at t ≈ 54, but this change occurs more abruptly in
the Cx45-coupled system than in the Cx43-coupled system.

indicating that cell 3 is the “leader” and that cell 2 leads cell 1. Lead site shifts from cell

3 to cell 2 at t ≈ 54, when ∆φ32 crosses zero but ∆φ2,1 remains positive. Lead site then

shifts again from cell 2 to cell 1 at t ≈ 60, as ∆φ2,1 crosses zero. Almost no difference can be

detected between the overall behavior of the three-cell system in the two different coupling

schemes, indicating that the differences in voltage-dependent gating between Cx43 and Cx45

gap junctions do not impact the qualitative process of lead site shift in a network of three

cells.

Finally, in fig. 3.20, we simulate the case in which one intermediate cell or region receives

input from the sympathetic nervous system that increases the frequency of firing in that

region over a period of time, such that the intermediate region switches from phase-locking

with a slower region to phase-locking with a faster region. Cells 1 and 3 maintain constant
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Figure 3.19. As in figure 3.18, but here we expand the system to three cells
coupled in a nearest-neighbor arrangement by Cx43 and Cx45 gap junctions.
A: cells 1 and 2 remain identical and at constant frequency throughout the
simulation; the intrinsic frequency of cell 3 changes over a period of t = 100
from slightly faster than the cell 1-cell 2 pair to slightly slower than the pair. B
red curves depict the phase difference between cells 3 and 2, while blue curves
depict the phase difference between cells 2 and 1. Solid lines represent cells
coupled with Cx45 gap junctions, whereas dashed lines represent cells coupled
with Cx43 gap junctions. In both cases, lead site shifts from cell 3 to cell 2
at t ≈ 54 and then shifts from cell 2 to cell 1 at t ≈ 60, and subsequently
vacillates between cells 1 and 2.

frequencies, where cell 3 oscillates ≈ 10% faster than cell 1. We transition cell 2 from the

frequency of cell 1 to the frequency of cell 3 over an interval of t = 100 (fig. 3.20A). With

both Cx43 and Cx45 gap junctions, cells 1 and 2 are phase-locked at first (until t ≈ 50 for

Cx45 gap junctions and t ≈ 70 for Cx43 gap junctions), but the phase difference between

cells 1 and 2 gradually increases as the frequency of cell 2 increases. After desynchronizing

from cell 1, cell 2 ultimately phase-locks with cell 3, which occurs earlier with Cx 43 gap

junctions (t ≈ 30) than in Cx45 gap junctions (t ≈ 70). The difference in transition times

is such that with Cx43 coupling there is a time interval over which all three cells are phase-

locked (fig. 3.20B, from t ≈ 30 to t ≈ 70). This suggests that Cx45 gap junctional coupling

in the SAN may force separate regions of the SAN oscillating at distinct frequencies to
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Figure 3.20. Three cells coupled in a nearest-neighbor arrangement by Cx43
and Cx45 gap junctions. A: cells 1 and 3 remain at constant frequency through-
out the simulation, with cell 3 oscillating faster than cell 1. The intrinsic fre-
quency of cell 2 changes over a period of t = 100 from identical to cell 1 to
identical to cell 3. B: red curves depict the phase difference between cells 3 and
2, while blue curves depict the phase difference between cells 2 and 1. Solid
lines represent cells coupled with Cx45 gap junctions, whereas dashed lines
represent cells coupled with Cx43 gap junctions. In both cases, cell 2 switches
from synchronized with cell 1 to synchronized with cell 3. However, this shift
occurs more rapidly in Cx45-coupled cells than in Cx43-coupled cells, reducing
the time interval over which all three cells are phase-locked. In Cx45-coupled
cells, the three cells exhibit phase-locking between t ≈ 40 and t ≈ 61, while in
Cx43-coupled cells, the three cells exhibit phase-locking between t ≈ 20 and
t ≈ 70.

avoid phase-locking, whereas Cx43 gap junctions allow for cells at disparate frequencies to

phase-lock.

3.4.3. Two Cells with Time-Dependent Voltage Gating. As suggested by Des-

plantez [19], the dependence of gap junction conductance on junctional potential is in fact

not instantaneous but develops over time. Fig. 3.1 suggests that voltage dependence develops

on a time scale comparable to or slower than the cells’ intrinsic action potential; this suggests

that the combined voltage dependence and time dependence of coupling may give rise to more

70



complex dynamics than can be observed by studying the instantaneous voltage-dependent

system. Therefore, in order to find any potential effects of time-dependent coupling, we

extend the theory of weakly coupled oscillators to allow for conductance to develop on a

slow time-scale commensurate with changes to phase shift due to coupling. We augment

the system, as derived in section 3.2.1 to include a differential equation for gap junctional

conductance gc. The assumption that gc develops over a slower time-scale than the period

of intrinsic cellular implies that gc can be approximated by the average conductance over a

phase of oscillations. This generates the following system of differential equations for ψ, the

phase difference between two cells, and gc, the conductance across gap junctions coupling

the two cells:

dψ

dt
=

1

T

∫ T

0

z(τ)[gc(Vj) ∗ (VLC(τ + ψ)− VLC(τ)]dτ

dgc
dt

=
1

τc

[
1

T

∫ T

0

gj,∞(V (τ))dτ − gc
]

We consider the two parameter sets for gj,ss(∆V ) corresponding to Cx43 and Cx45 gap

junctions as reported in [19] (Table 3.1), and vary the magnitude of frequency difference

between the two cells. Plotting the nullcline for gc, also referred to as gc,∞ and the nullclines

for ψ generates the phase plane in figure 3.21. The gc,∞ curves for Cx43 and Cx45 gap

junctions are qualitatively similar: both steady-state conductances are at 1 for synchronous

cells, and dip symmetrically as the phase difference increases. The Cx45 gc,∞ nullcline dips

lower than does the Cx43 gc,∞ nullcline around antiphase. When ∆ω = 0, the ψ nullcline

consists of two vertical lines at zero (synchrony) and 0.5 (antiphase), resulting in a stable

steady state at synchrony and an unstable steady state at antiphase for both Cx43 and

Cx45 gap junctions. The steady-state conductance at the unstable equilibrium at antiphase

is slightly higher for Cx43 gap junctions than for Cx45 gap junctions. As heterogeneity ∆ω

increases, the ψ nullcline shifts upward, moving the two steady states. The stable steady

state at synchrony shifts in the positive direction, while the unstable steady state at antiphase
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shifts in the negative direction. As the steady states shift, the steady-state conductance at

the stable equilibrium point decreases, following the gc,∞ nullclines for either Cx43 or Cx45.

As heterogeneity is further increased, both steady states come together and disappear in

a saddle-node bifurcation (SNB). The SNB occurs at higher heterogeneity for Cx43 gap

junctions (∆ω between 30 and 40) than for Cx45 gap junctions (∆ω between 20 and 30)

due to the higher gc nullcline. Note that in the constant-conductance case, the SNB occurs

at ∆ω between 40 and 50. Notably, because the stable and unstable steady states remain

close to synchrony and antiphase respectively for the time- and voltage-dependent systems,

the time-dependence of voltage-dependent conductance does not qualitatively change the

properties of the 1:1 phase-locking in the system. Moreover, considering time-dependent

voltage gating does not illuminate any underlying qualitative differences between Cx45 and

Cx43 gap junctions.

The time-dependence of gap junctional voltage gating does not provide additional evi-

dence for the specific role of different gap junctions in different regions of the heart. As in

our studies of instantaneous voltage-dependent gating, we do not see any evidence that the

voltage-gated conductance differences between Cx43 and Cx45 gap junctions contribute to

qualitative differences in synchrony and phase-locking properties in small networks of cells

in the heart.

3.5. Discussion

In our analysis of symmetrically coupled pairs of cells, the parameters that define voltage-

dependent gap junctional conductance affect the average conductance across gap junctions

over the cardiac cycle, but do not qualitatively change the phase-locking properties of a

coupled system. Since cell-to-cell coupling always acts as a synchronizing force, we expect

that gap junctions with lower conductance between cells will destabilize synchrony, and

our results are consistent with this expectation. In all simulations with homogeneous cells,

there is one stable steady state at synchrony and one unstable steady state at antiphase.

As heterogeneity increases, the two steady states approach each other and annihilate in a
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Figure 3.21. Phase plane for a system of two cells coupled by Cx43 and Cx45
gap junctions, with slowly developing voltage dependence of conductance. We
plot the nullclines of conductance gc corresponding to each gap junction type,
and of phase difference ψ for various magnitudes of frequency difference ∆ω
between the two cells.

saddle-node bifurcation. Each of the measures of robustness of synchrony to heterogeneity

in a two-cell pair depends monotonically on each of the three parameters gj,min, Vj,0, and A,

with one small exception for very low A. Over the majority of parameter space, robustness

increases with increased gj,min, increased |Vj,0|, and decreased A. For very low A, the stability

of synchrony measured by |G′(0)| decreases with increased A; however, this non-monotonicity

has a minimal effect on overall behavior. Based on the monotonic dependence of robustness

on each parameter and the fact that Cx45 gap junctions have lower gj,min, lower |Vj,0|, and

similar values of A compared to Cx43 gap junctions, we expect two-cell pairs coupled with

parameters corresponding to Cx45 gap junctions to display lower robustness to heterogeneity

than pairs coupled by parameters corresponding to Cx43 gap junctions with similar coupling
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strength at ∆V = 0. However, the existence and stability of 1:1 phase-locked steady states

do not change qualitatively with changes in voltage-gating parameters.

Similarly, in our analysis of the effects of each gating parameter on the cross-correlogram

ρ(ψ), the stability of synchrony and instability of antiphase both increase with increased

gj,min, increased |Vj,0|, and decreased A. Therefore, we expect synchrony in cell pairs coupled

by Cx45 gap junctions to exhibit less robustness to random noise than does synchrony in

pairs coupled by Cx43 gap junctions.

Our analysis of systems of three cells – both in all-all and nearest-neighbor coupling

arrangements – provides similar predictions regarding the robustness of phase-locking to

heterogeneity as in pairs of cells. The existence, number, and stability of 1:1 phase-locked

steady states in the symmetrically coupled, homogeneous system do not change depending

on voltage-gating parameters. However, the robustness to heterogeneity of the single stable

steady state, as measured by ∆ωSNB, the magnitude of heterogeneity required to desynchro-

nize a single cell from an identical pair, depends monotonically on each gating parameter.

As in the two-cell system, robustness increases with increased gj,min, increased |Vj,0|, and de-

creased A. Thus, we expect systems of three cells coupled by Cx43 gap junctions to exhibit

lower overall robustness to heterogeneity than those coupled with Cx45 gap junctions, but

we do not expect fundamental differences in phase-locking dynamics. Moreover, we expect

the results of the three-cell system to extend to larger networks of cells; we predict that the

differences in voltage-dependent gating between different gap junctions impact the robust-

ness of a network of cells to heterogeneity, but do not qualitatively alter the phase-locking

properties.

Results from the extension of the theory of weakly coupled oscillators to slow, time-

dependent voltage-dependent gating align with the findings of our instantaneous voltage-

gating analysis. In pairs of cells coupled with time-dependent gap junctions, slow gating

reduces the conductance when the phase difference is not close to zero. However, there

remains one stable steady state at synchrony and one unstable steady state at antiphase;
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as heterogeneity increases, the two steady states approach each other and annihilate in a

saddle-node bifurcation, as in the instantaneous voltage-gated coupling system. A pair of

cells coupled by Cx45 gap junctions exhibits lower coupling conductance than the same pair

coupled by Cx43 gap junctions at every phase difference except synchrony, which is also

predicted by the instantaneous voltage-gating analysis. The extention to time-dependent

gating does not seem to give rise to any further complexity in the properties of synchrony

and phase-locking in a pair of cells.

It has been argued that coupling in the SAN must be weaker overall than in the surround-

ing atrium in order to maintain electrical insulation of the SAN [9, 18]. This is consistent

with the lower conduction velocity in the SAN than in the atria and ventricles [18]. Based

on the differences in single-channel conductance between Cx45 and Cx43 gap junctions, the

sinoatrial node is expected to have less cell-to-cell current coupling per gap junction chan-

nel than the atrium. The fact that there are also fewer total gap junctions in the SAN

than in the working myocardium further reduces the conductance in the SAN relative to the

atria and ventricles [18]. Voltage-dependence of gap junctions may provide a more effective

measure to insulate the SAN, by reducing the electronic influence of atrial cells on SAN

cells. However, given the reduced overall number of gap junctions throughout the SAN and

lower single-channel conductance of Cx45 gap junctions, the argument for reduced overall

electrical coupling in the SAN compared with the atria and ventricles does not necessarily

provide further justification for the importance of the voltage-dependent coupling of Cx45

gap junctions.

It may be that the arrangement of Cx43 and Cx45 in the SAN and surrounding tissue

affects cardiac conduction via mechanisms more complex than can be accounted for in a small

network of cells with symmetric coupling. Some evidence indicates that the presence of an

“intermediate” region immediately surrounding the SAN, possibly containing both Cx45 and

Cx43 gap junctions and/or heterotypic Cx45-Cx43 gap junctions, is important to achieving

the balance between electrical source strength and insulation necessary for the SAN to pace
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the myocardium [34]. Indeed, such a “peripheral” region has been identified in which both

Cx43 and Cx45 are expressed [9,18]. Heterotypic gap junctions composed of both Cx43 and

Cx45 have been shown to exhibit asymmetric voltage dependence [55]. Future modeling

work should extend the present efforts by considering the role of asymmetric coupling on

phase locking in SAN cells.

It is also possible that there are functionally distinctive characteristics of Cx43 and Cx45

gap junctions that make each more suitable for different regions of the heart, but which

are beyond the scope of our modeling approach. For instance, Cx43 and Cx45 may be

differentially modulated by biochemical and physiological factors. While both Cx43 and

Cx45 gap junctions exhibit reduced coupling in the presence of low intracellular pH [39,67],

the two may respond in opposite directions to the presence of cyclic AMP (cAMP) and

subsequent phosphorylation by protein kinase A (PKA). Experiments have suggested that

Cx43 gap junctions increase their coupling in the presence of PKA, while Cx45 gap junctions

decrease their coupling [39, 67]. Given that the sympathetic nervous system modulates

heart rate via intracellular cAMP-PKA signaling in the sinoatrial node, the response of gap

junctions to PKA could be highly relevant to the distinguishing features of the SAN.

Finally, the distribution and relative abundance of Cx40, Cx43 and Cx45 gap junctions

changes in end-stage congestive heart failure [18]. In particular, the proportion of Cx43 rela-

tive to Cx45 decreases. The mechanisms and consequences of these adaptations in pathology

may provide insight into the general distribution and function of different types of gap junc-

tions in the healthy system. It is therefore of interest to further examine the changes that

occur in chronic heart failure and to consider how the shifting proportions of connexin iso-

forms might have either cardioprotective or harmful consequences.

3.6. Appendix: Guevara SAN cell model

The three-variable ionic model for sinoatrial node cells by Guevara [26] includes vari-

ables for membrane potential (V ), inactivation gate for the slow inward current Is (f), and

potassium channel activation (p):
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dV

dt
= −d∞f(V )̄iS(V )− p(V )̄iK(V )− IL(V ) + Iapp

df

dt
= αf (V )(1− f)− βf (V )f

dp

dt
= αp(V )(1− p)− βp(V )p

with currents, parameters, αx and βx functions defined as follows:

• Slow inward current IS is given by

IS = d∞ · f(V )̄iS(V )

with activation current d∞ defined as

d∞ =
αd

αd + βd

where

αd(V ) =
1.2

1 + exp(−V/12)

βd(V ) =
0.25

1 + exp((V + 30)/8)
.

The inactivation gate f(V ) is governed by the differential equation

f(V ) = − 1

τf
(f − f∞)

where

f∞ =
αf

αf + βf

τf =
1

αf + βf
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and αf (V ), βf (V ) are given by

αf (V ) = 7× 10−4 V + 45

exp((V + 45)/9.5)− 1

βf (V ) =
0.036

1 + exp(−(V + 21)/9.5)
.

Maximal current īS is given by

īS = 15(exp((V − 40)/25)− 1).

• Potassium current IK is given by

IK = p(V )̄iK(V )

with activation current p(V ) defined by

p(V ) = − 1

τp
(p− p∞)

and τp, p∞ given by

p∞ =
αp

αp + βp

τp =
1

αp + βp

with αp, βp given by

αp(V ) =
8× 10−3

1 + exp(−(V + 4)/13)

βp(V ) = 1.7× 10−4 V + 40

exp((V + 40)/13.3)− 1
.
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Maximal current īK is defined as

īK = 0.91
exp(0.0277(V + 90))− 1

exp(0.0277(V + 40))
.

• Leak current Il is defined by

Il = 1.2(1− exp(−(V + 60)/25)) +
0.15(V − 2)

1− exp(−(V − 2)/5)
.
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CHAPTER 4

Relationships between geometry, excitability, and pacemaking

properties in an oscillatory or ischemic region of excitable tissue

4.1. Introduction

The sinoatrial node (SAN) fires periodic action potentials that spread into the atrium

and signal muscle cells to contract, thereby initiating the beating of the heart. The interplay

between competing demands of robustness of pacemaking and flexibility of frequency requires

the SAN to balance electrical conductivity with insulation from the surrounding atrium, so

that action potential signals can propagate outward without decaying.

The crescent-like shape of the sinoatrial node may play a role in balancing the demands

for conductivity and insulation. While action potentials consistently originate in and around

the central area of the SAN, the precise location of first activation shifts along the superior-

inferior axis of the node as the frequency of oscillations changes [3,8]. These action potentials

propagate outward in electrical waves that travel in a particular direction. There appear

to be a small number of discrete “exit sites” through which action potential waves travel

from the SAN into the surrounding atrial tissue [21, 44, 58]. Nodal cells are contained

within a matrix of connective tissue, and it is unclear the degree to which the nodal cells

are coupled to atrial cells [46]. Moreover, the node contains extensions that interdigitate

with the surrounding atrial tissue, and in humans the presence of such extensions varies by

individual [58]. Therefore, it is plausible that the limited number of exit pathways from the

SAN may be due to emergent properties of the physiology and geometry of the SAN [46,68].

Given that the function of the SAN is critical in controlling cardiac rhythmicity and therefore

is essential to the survival and health of the organism, it is important to understand how the
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electrophysiological properties of the node interact with its complex geometry to influence

cardiac conduction.

Beyond the setting of the SA node, ischemia or infarction can cause a region of tissue

in the myocardium to become spontaneously active and to produce electrical waves [27,61].

The resulting ectopic beats constitute dangerous and often fatal arrhythmias. In recent years,

significant mathematical and computational effort has been made to model the behavior and

particularly the direction of propagation of such arrhythmias [1,50,71]. These models have

enormous potential for patient-specific medicine, as they enable clinicians to ablate localized

regions of the heart in a targeted manner in order to stop the ectopic waves [11, 54]. The

models used in such studies are highly complex and can reproduce the behavior of ectopic

beats with a high degree of accuracy. In the present work, by using a much simpler model

and exploring a wide range of parameters, we focus instead on the fundamental theoretical

underpinnings that determine the relationship between the size and shape of an ischemic or

spontaneously active region and its propensity to generate rhythmic action potential waves.

There is reason to expect that the geometry and curvature of an ischemic or oscillating re-

gion of cardiac tissue should influence its pacing properties. Throughout the heart, a number

of mechanisms exist –including the geometry and tissue structure of the SA node – that are

thought to maintain a precise balance between areas of electrical “source” and “sink”, i.e.,

regions that generate electrical current and regions to which current diffuses [48,72]. Con-

ventional understanding suggests that electrical waves propagate more rapidly from stronger

“source” regions, which includes regions of higher negative curvature, due to their higher

area and therefore greater quantity of current as compared with regions of positive cur-

vature, which are effectively smaller in comparison with surrounding excitable media [66].

Recent work, however, using both in vitro experiments on neonatal rat ventricular myocyte

monolayers and a combination of mathematical analysis and computational simulation, con-

tradicts this argument, suggesting that positive curvature may increase the propensity for

a source to produce periodic waves [69]. This extends the work in [35], which established a
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Figure 4.1. For αexc = 0.25, waves alternate between arising from the edges
(left) and the corners (right). Waves initiating at the edges decay as they
propagate away from the oscillatory region. Waves initiated at the corners
propagate successfully from the oscillatory region throughout the tissue.

theoretical mechanism for the onset of oscillations from a pacemaking region through a cable

of excitable tissue. In particular, [69] takes into account curvature in the domain, arguing

that an ischemic region with sharp corners may be more likely to generate propagating elec-

trical waves from the corners than from the edges. While the result in [69] is surprising, it

generates important questions regarding the factors that modulate the relationship between

geometry, current density, and coupling strength between the SAN – or any spontaneously

active region – and surrounding myocardial tissue, and the frequency and robustness of prop-

agating action potentials. Here, we use a combination of analysis and simulation of ordinary

and partial differential equation models in an effort to explain and contextualize the result

from [69], and to provide further insight to the role that the geometry of the SAN, or of an

ischemic region, plays in governing current conduction in cardiac pacemaking.

Preliminary simulations of a square, oscillatory region surrounded by an excitable do-

main suggest that in some cases, waves may propagate from the corners of an oscillatory

region (figure 4.1. However, we observe more complex behavior: between the threshold for

global oscillations and the threshold for global 1:1 action potentials we observe a corner-edge

alternating phenomenon wherein a wave propagating from the edges of the oscillatory region
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that decays rapidly is followed by a wave propagating from the corners of the oscillatory re-

gion that does not decay (figure 4.1). The majority of the atrial tissue therefore fires action

potentials in a 1:2 pattern with the SAN, that is, every other time the SAN fires.

We are interested in understanding the mathematical principles behind this spatially

heterogeneous period-doubling behavior, which holds not only for square SAN but also for

a triangular and a round SAN (data not shown). However, a rigorous analysis of the PDE

in two spatial dimensions is not feasible; thus, we use numerical simulations of a 1-D, two-

domain system to gain intuition, and then study the analogous system in zero dimensions

(two coupled cells, representing atrial and SAN or ischemic tissue) and in one spatial dimen-

sion for more rigorous insight into these simplified systems.

4.2. General Approach: FitzHugh-Nagumo model

We use the FitzHugh-Nagumo (FHN) model, an idealized mathematical model for ex-

citable dynamics, to simulate and analyze the threshold behavior of an oscillatory or bistable

region pacing an excitable region of tissue. We aim to examine the relationship between size

and curvature, electrophysiological properties of an ischemic region, and the propensity for

ectopic pacing, as well as to place the counterintuitive results in [69] in a broader theoretical

context. We address these objectives by augmenting the FHN model, as described below, as

a partial differential equation in one spatial dimension and as a system of ordinary differen-

tial equations with two coupled cells, one of which is excitable and the other is oscillatory

or bistable.

4.2.1. Single-Cell FHN System. The single-cell FHN ordinary differential equation

contains two differential equations for variables which we define as v and w, where v repre-

sents a voltage variable whose derivative is defined by a coarse-grained sum of ionic membrane

currents and w represents a refractory gating variable, akin to a potassium current:
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dv

dt
= f(v)− w

dw

dt
= ε(v − γw − α)

where f(v) = −v(v − 1)(v − a), with a < 0.5. We fix a = 0.13 throughout. Generally, the

function f can be replaced by any appropriately shaped “cubic-like” function, i.e., decreasing

for small and large v and increasing for intermediate v, with roots at v = 0, 1 and an interme-

diate value. The parameters α and γ are analogous to combined parameters resulting from

conductances and equilibrium potentials for ionic currents in an electrophysiological model;

in the general FHN model changes to α and γ can model changes in cellular excitability due

to different cell types, ischemia, or input from the autonomic nervous system.

The single-cell, two-dimensional ODE allows for several possible scenarios (see fig. 4.2),

depending on parameters α and γ, whose values determine the location of the steady state(s)

relative to the v nullcline, and hence determine the behavior of the system. See fig. 4.2 for

the bifurcation structure and intrinsic frequency of the single-cell system. When α and γ are

both small, the v and w nullclines have one intersection where v is less than its value at the

local minimum of f(v) (blue line in fig. 4.2A); in this case the system is “excitable,” meaning

that a stimulus higher than a certain threshold results in an action potential after which the

system returns to its steady state. As γ increases, the w nullcline becomes flatter. When

γ is sufficiently large that the w nullcline intersects the v nullcline three times, the system

is bistable (red line in fig. 4.2A). The parameter α adds a negative vertical shift to the w

nullcline. When α is sufficiently large and γ is small, there is one intersection between the

two nullclines in the portion of the v nullcline f(v) where f is increasing (yellow line in fig.

4.2A); this results in an oscillatory system with an unstable steady state and a stable limit

cycle. However, when α and/or γ are sufficiently high, there is only one depolarized steady

state which occurs for v ≈ 1 (green line in fig. 4.2A). These scenarios can be visualized in

the phase plane (fig. 4.2A) and are summarized over a range of parameters in fig. 4.2D.
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Figure 4.2. Behavior of the single-cell FHN system. A: for fixed γ = 1, as
α changes, the rest state loses stability as the system undergoes a Hopf-like
bifurcation to become oscillatory. At the onset of oscillations (α ≈ 0.06), the
oscillations are subthreshold, but as α increases the oscillations become large
enough to trigger action potentials, and the frequency immediately decreases.
B: the frequency of the intrinsic oscillations starts at 0.06 at the onset of
oscillations where α ≈ 0.04, immediately decreases to ∼0.03, and peaks again
around α ≈ 0.68 before oscillations cease. C dependence of intrinsic frequency
on γ and α in the single cell model. D: two-parameter diagram showing regions
of excitable, bistable, oscillatory, and monostable depolarized behavior in the
single-cell system depending on γ and α.

4.2.2. Spatially extended FHN system. The FHN partial differential equation con-

tains the same variables v and w and the same parameters as the ODE, with an additional

diffusion term in the voltage variable:

∂v

∂t
= D∆v + f(v)− w(4.1)

∂w

∂t
= ε(v − γ(x)w − α(x))
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The diffusion of voltage in eq. (4.1) represents current traveling through gap junctions in

cardiac tissue. Since the conduction of current through gap junctions occurs in a manner

proportional to the difference in membrane potential between adjacent cells, current travels

down its electrical gradient, analogous to the process of chemical diffusion. The spatial term

in (4.1) allows for the domain size, shape, and boundary conditions to exert additional effects

on the behavior of the system. In the present work, we analyze the impacts of γ, α, boundary

conditions, and domain constraints on action potential propagation.

4.3. Simulations of a 1D, 2-domain model with planar and radial diffusion

4.3.1. Approach. In order to understand the pacemaking properties of an ischemic or

oscillatory area of tissue, we construct a one-dimensional domain consisting of two distinct

subregions. Both subregions obey the FitzHugh-Nagumo (FHN) PDE (4.1), but the pa-

rameters differ: one region, representing the atrial tissue, has a standard set of excitable

parameters (α = 0, γ = 1.5); the second region, representing the SAN or an ischemic re-

gion, has excitability parameters αisch and γisch that vary within the oscillatory, bistable,

and monostable depolarized parameter regimes for the space-clamped FHN system (see fig.

4.2D).

Our goal is to analyze the relationship between the excitability parameters of the oscil-

latory or ischemic region, the curvature or relative size of the oscillatory/ischemic region,

and the existence and stability of periodic waves propagating from the ischemic/oscillatory

region through the excitable region. Following the approach in [69], we account for the

effects of size and curvature at the interface by comparing results between systems using the

radial diffusion operator ∂2

∂2r
+ 1

r
∂
∂r

versus the standard planar diffusion operator ∂2

∂2x
. While

the planar diffusion case represents planar waves in two dimensions, the radial diffusion case

represents a slice of an annulus, and therefore generates predictions for a radially symmetric

two-dimensional domain. Since the radial diffusion operator accounts for the curvature at

the interface between the two regions, comparison between results with planar and with

radial diffusion higlights the importance of the size and curvature of the ischemic region.
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In the planar diffusion case we consider the interval x ∈ [0, L], with an interface at

r0 ∈ (0, L) such that for x ≤ r0, parameters are within the bistable, oscillatory, or monostable

depolarized regime (representing ischemic tissue), while for x > r0 parameters are set to

standard values for excitable media. In the radial diffusion case, we take an annulus r ∈ [l, L]

with l > 0 small and L = l + 256, and similarly choose a point r0 ∈ (l, L) to denote

the interface between the two regions. For r ≤ r0, parameters are within the bistable,

oscillatory, or monostable depolarized regime, while for r > r0 parameters are set to standard

values for excitable media. We compare the results between planar and radial diffusion by

choosing r0 = 15, sufficiently small that the effect of the radial diffusion operator on solutions

is noticeable. Between the planar and radial diffusion cases, we compare the regions of

(αisch, γisch, r0) parameter space in which we observe 1:1 pacing, wave block, and any other

behaviors. In particular, we analyze the effects of the parameter r0 on the threshold for the

onset of oscillations and the frequency and amplitude of these oscillations, as well as on the

region of parameter space over which traveling waves occur.

4.3.2. Results. The planar diffusion case consists of the FHN PDE on the interval

x ∈ [0, L]:

∂v

∂t
= D

∂2v

∂x2
+ f(v)− w

∂w

∂t
= ε(v − γ(x)w − α(x))

where f(v) = −v(v−1)(v−a), with a = 0.13. The parameters γ(x) and α(x) vary spatially:
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γ =


γisch x ≤ r0

1.5 x > r0

α =


αisch x ≤ r0

0 x > r0

In the radial diffusion case, we take an annulus r ∈ [l, L] with l > 0 small, and simulate the

system

∂v

∂t
= D

(
∂2v

∂r2
+

1

r

∂v

∂r

)
+ f(v)− w

∂w

∂t
= ε(v − γ(r)w − α(r))

where f(v) = −v(v− 1)(v− a), with a = 0.13. The parameters γ(r) and α(r) vary spatially,

as above.

As in [69], we set L to 256. We compare the results between planar and radial diffusion

by choosing r0 = 15, sufficiently small that the effect of the radial diffusion operator on

solutions is noticeable. We compare the regions of parameter space in which we observe 1:1

pacing, wave block, and any other behaviors.

4.3.2.1. Dirichlet boundary conditions. In order to contextualize the results in [69], we

first apply Dirichlet boundary conditions at the inner boundary l. Thus, we set v(l) = V0

where V0 is determined as

V0 =


0.75 oscillatory system

v∗ bistable system

where v∗ is the upper (depolarized) stable steady state for the bistable ODE system. The

Dirichlet boundary condition (BC) represents the assumption that the ischemic region is
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large enough or insulated enough to remain at a depolarized resting voltage despite the

electrotonic load from the surrounding excitable tissue. In contrast, a Neumann BC, which

we explore below, represents the assumption of radial symmetry but allows for the ischemic

region to fluctuate in membrane potential.

In the planar system with planar diffusion, there is a two-dimensional region of (γisch, αisch)

space in which the ischemic region successfully paces the excitable region (fig. 4.3A). As

αisch increases, the range of γisch over which pacing occurs shifts toward lower values of

γisch and widens slightly. For instance, when αisch = 0, 1:1 pacing occurs for approximately

4 < γisch < 9, while for αisch = 0.1, 1:1 pacing occurs for approximately 1 < γisch < 8. Wave

block occurs for γisch too low or too high: when αisch = 0, wave block occurs for γisch < 4

and γisch > 13, while for αisch = 0.1, wave block occurs for γisch > 11.5. Between the regions

of 1:1 pacing, there is an area of parameter space over which pacing appears to transition

smoothly from 1:1 to 1:0 over a range of γisch values of width ∼ 4 (4.3A, light blue region).

In the radial-diffusion system with r0 = 15, there is again a region of (γisch, αisch) space

over which 1:1 pacing occurs (4.3B, yellow area), and in which as αisch, increases, the range

of γisch over which oscillations occur shifts towards lower γisch. The 1:1 pacing region occurs

over a higher range of γisch values in the radial diffusion than in the planar diffusion system.

When αisch = 0, for example, 1:1 pacing is observed only for γisch > 11.5. In the radial

diffusion case, we observe an additional region of parameter space, absent from the planar

diffusion results, in which the ischemic region paces the excitable region in a 1:2 pattern

(fig. 4.3B, green region). Although the region of 1:1 pacing is narrower for high αisch in

the radial than in the planar diffusion case, the region of wave block is also narrower in

the radial diffusion case due to the additional, large parameter region of 1:2 pacing. The

radial diffusion simulations also show a much narrower region of period-decrease than do

the planar diffusion simulations as γisch increases from pacing to wave block. In the radial

diffusion case, the system appears to instead transition abruptly from 1:1 or 1:2 pacing to

wave block.
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Figure 4.3. Frequency ratio between the excitable and ischemic regions, with
a Dirichlet internal boundary condition, across a range of (γisch, αisch) values.
In the planar system (A), with γexc = 1.5, there is a two-dimensional region of
(γisch, αisch) space in which the ischemic region successfully paces the excitable
region. In the radial diffusion system (B), when the radius is sufficiently small
that the shape affects the pacemaking properties of the ischemic region (r0 =
15), a region of (γisch, αisch) space arises in which 2:1 pacing occurs. In both
planar and radial diffusion cases, the range of γisch over which 1:1 oscillatios
occur shifts toward lower γisch as αisch increases.

Comparison between fig. 4.3 panels A and B suggests that higher curvature (or smaller

size) in an ischemic or oscillatory region widens the range of parameter space over which

waves can propagate. Curvature also shifts the parameter regime over which beats can prop-

agate toward higher γisch values, so that ischemic regions deeper in the bistable parameter

regime are better able to propagate ectopic waves. Moreover, increased curvature increases

the propensity for 1:2 pacing.

We can observe how these properties change as r0 is varied over a range by fixing αisch

and varying γisch and r0. In fig. 4.4, we plot the ratio of frequency between the ischemic

and atrial region over a range of (γisch, r0) with αisch = 0. For an ischemic region with r0
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Figure 4.4. Frequency ratio (exc:isch) in the radial diffusion system with
Dirichlet BCs, for fixed αisch = 0. There is a small region of 1:1 pacing, in
which the range of γisch shifts toward lower γisch as size of the ischemic region r0

increases. As r0 decreases, i.e., for higher curvature, the minimum threshold γ∗

at which oscillations arise increases, but the range of γ over which oscillations
occur widens.

too small, i.e. less than ∼ 9, waves do not propagate. However, above this minimal size,

the frequency of spontaneous beats depends nonmonotonically on γisch and r0. Notably, as

r0 decreases toward the minimal size for pacing, the threshold γ∗ at which oscillations arise

increases. Further, as r0 decreases, the range of γ values over which oscillations occur also

widens. When r0 = 15, we observe pacing for 9.8 < γisch < 13.8, while when r0 = 15, pacing

occurs from γ ≈ 10.6 to γ > 15 (fig. 4.4). This suggests that for smaller ischemic regions,

more bistable-like excitability makes ectopic waves more likely; for larger ischemic regions,

only a finely-tuned range of parameters can produce ectopic waves.

4.3.2.2. Neumann boundary conditions. We next compare the planar and radial diffusion

cases in the two-domain model with Neumann boundary conditions, where dv
dr

(l) = 0. While

the Dirichlet boundary condition represents a depolarized ischemic region with sufficient
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current density and electrical insulation that it cannot hyperpolarize, the Neumann boundary

better represents radial symmetry of the domain. We expect that the Neumann BC more

appropriately represents an ischemic region, particularly of small size, as the electrotonic

load from the surrounding excitable tissue plays an important role in mediating the ability

of a spontaneously active region to generate waves.

In the planar diffusion case with Neumann boundary condition, unlike with Dirichlet

boundary conditions, for αisch too low (below ∼ 0.07, waves do not propagate. This means

that with Neumann boundaries, an ischemic region that is purely bistable rather than os-

cillatory cannot pace the excitable region. When αisch is above this threshold, there is a

wing-shaped region of (γ, α)-space over which 1:1 pacing occurs (fig. 4.5A). Within the 1:1

region, as αisch increases, the range of γisch over which pacing occurs becomes narrower. For

example, when α = 0.12, 1:1 pacing occurs for γisch < 8, while for α = 0.36, 1:1 pacing

occurs only for γisch < 5. For αisch above 0.43, only 1:2 pacing is observed. As with Dirichlet

boundary conditions, for fixed γisch, as αisch increases from the 1:1 pacing parameter region

to the wave-block parameter region, there is an interval of γisch over which a transition occurs

in which the pacing appears to transition smoothly in a period-decrease phenomenon from

1:1 through 2:1 and gradually to 1:0 pacing.

With radial diffusion, when the size of the SAN or ischemic region is sufficiently small

(r0 = 15), the region of parameter space over which 1:1 pacing occurs becomes narrower

in αisch and wider in γisch (fig. 4.5B, yellow region) as compared with the planar-diffusion

results. In the radial diffusion simulations, the region of 1:1 pacing shifts toward higher γisch;

pacing takes place for γisch as high as ∼ 11.3 in the radial case, as compared with ∼ 7.9 in the

planar case. As with planar diffusion, in the radial-diffusion case there is a minimum αisch

below which no waves propagate; in the radial-diffusion case this minimum occurs slightly

higher, at αisch ≈ 0.09. The region of 1:1 pacing again has a winged shape, such that pacing

occurs over the widest range of γisch when αisch = 0.2. As αisch increases, the region of

parameter space in which pacing occurs narrows with respect to γisch. In the radial case,
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Figure 4.5. Atrial:SAN frequency ratio with homogeneous Neumann bound-
ary condition in planar diffusion (A) and radial diffusion (B) over a range of
(γisch, αisch) values. In the planar diffusion system with homogeneous Neu-
mann boundary condition, a region of (γisch, αisch) space arises in which 1:1
pacing occurs for sufficiently high α and low γ. In the areas of parameter space
just outside of the 1:1 pacing region, there are period-increase transitional re-
gions where slower oscillations occur. Outside of these parameter regimes, the
internal ischemic/oscillatory region is not able to drive traveling waves in the
excitable region. In the radial diffusion system with homogeneous Neumann
boundary condition, when the radius is sufficiently small that the shape af-
fects the pacemaking properties of the ischemic region (r0 = 15), a region of
(γisch, αisch) space arises in which 2:1 pacing occurs for sufficiently high α and
low γ.

there is a larger parameter region of 1:2 pacing: when αisch > 0.33, only 1:2 pacing occurs

(fig. 4.5B). As in the simulations with Dirichlet boundaries, the radial diffusion simulations

also show a much narrower region of period-decrease than do the planar diffusion simulations

as γisch increases from pacing to wave block. In the radial diffusion case, the system appears

to instead transition abruptly from 1:1 or 1:2 pacing to wave block.

In order to compare the effects of parameters over a range of sizes of an oscillatory or

ischemic region, we consider the frequency of oscillations as a function of γisch and r0 for

fixed αisch. When αisch = 0, no pacing occurs. This is consistent with intuition: for a
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monostable or bistable ischemic region, with no current source at the center, the ischemic

region does not produce a stimulus to pace the excitable region. When αisch = 0.25, as the

size of the SAN changes there are several distinct regions of parameter space with respect

to the frequency of traveling waves driven through the excitable region (fig. 4.6). There

is a large region of 1:1 pacing, where the oscillatory or ischemic region drives the excitable

region (fig. 4.6, region 1). When r0 is too small or γisch is too large, no pacing occurs (fig.

4.6, regions 2 and 3). Notably, there appears to be a gradual period-decrease transition as

γisch increases (fig. 4.6, region 4). However, we also see an isolated region of (α, γ)-space

over which a distinct period doubling phenomenon occurs (4.6, region 4), which is entirely

surrounded by the region of 1:1 pacing. Notably, there is a range of small ischemic area (r0

below ∼ 15) over which as r0 increases, the width of γisch-space over which 1:1 pacing occurs

widens and pacing occurs at higher γisch values. For r0 above this interval, as r0 continues

to increase, the region of 1:1 pacing shifts toward lower γisch.

In order to characterize the behavior in each of the five regions labeled in fig. 4.6, we use

space-time plots from representative points in regions 1-5. The behavior in each of the five

different regions in fig. 4.6 is summarized by the space-time plots in fig. 4.7. In region 1, there

is 1:1 pacing, in which every action potential in the oscillatory/ischemic region generates a

propagating wave through the excitable region. In region 2, the oscillatory/ischemic region

produces one action potential that propagates, but after this initial wave the excitable region

remains hyperpolarized, although the ischemic region stays at a depolarized potential. In

region 3, the ischemic region does not produce an initial wave, and instead approximately

half of the ischemic region becomes hyperpolarized due to the electrotonic load from the

excitable region. In region 4, the ischemic region stays hyperpolarized over time with small

spatial oscillations that periodically propagate through the atrium at a lower frequency

than the intrinsic frequency of the ischemic tissue. In region 5, the ischemic region fires

distinct action potentials, and every other of these action potentials produces a wave that

propagates through the excitable region. Notably, although the far-field exhibits steady
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Figure 4.6. With homogeneous Neumann boundary condition and an oscil-
latory central region (α = 0.25), as the radius of the SAN changes several
different regions of different frequency traveling waves through the atrium are
produced.

firing in both regions 4 and 5 at a frequency lower than that in the ischemic region, the

behavior in the ischemic region differs markedly: in region 4, the ischemic region fluctuates

slightly but remains depolarized between ectopic beats, while in region 5 the ischemic region

hyperpolarizes between beats.

The results of our two-domain simulations, as summarized by heatmaps showing how

the frequency of oscillations in the excitable region depends on γisch, αisch and r0 (figs.

4.3, 4.5, 4.9, 4.4, 4.6) and further detailed in space-time plots showing the time-course

of the system in various parameter regimes, are highly complex in their dependence on

both excitability parameters and curvature. Moreover, there are notable differences between

results in the Neumann and Dirichlet BC studies; most notably, with Neumann BCs, the

threshold representing the onset of oscillations is non-monotonic in slope (fig. 4.6), while

with Dirichlet BCs the threshold has a monotonic, negative slope (fig. 4.4). We expect that

the Neumann BC reflects a more physiologically realistic ischemic region because it allows
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Figure 4.7. Space-time plots depicting the behavior of the FHN system with
two domains and Neumann boundary condition ∂v

∂r
(l) = 0 representing radial

symmetry.

for the electrotonic load from the surrounding tissue to influence the membrane potential

of the ischemic region. Given that we are interested in the effects of small size and high

curvature of an ischemic region on pacing, the Dirichlet BC, which assumes a sufficiently

large ischemic region to prevent hyperpolarization, does not allow us to fully address these

questions.

The complexity of results observed here led us to investigate subsequent reduced mod-

els: first we study 1D, one-domain models with Neumann boundary conditions and Dirichlet

boundary conditions, where the activity of the ischemic or SAN region is reduced to a bound-

ary condition. We investigate the relationship between the boundary condition, relative size

of the SAN/ischemic region, and oscillations. Finally we consider a bulk system of two cells

where an “atrial” or excitable cell is coupled to an “SAN/ischemic” (oscillatory/bistable) cell,

and investigate the relationships between parameters and oscillations. In the two-cell case,
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we use the phase planes to understand in greater depth the bifurcation structure underlying

the patterns observed in the one- and two-domain PDE models.

4.4. Simulations and analysis of a 1D, 1-domain model with planar and radial

diffusion

4.4.1. Approach. In order to reduce the full two-domain PDE study to an analytically

tractable problem, we reduce the ischemic domain to a boundary condition and treat the

excitable domain as a homogeneous one-dimensional cable. As in the two-domain model, we

compare the behavior of the system with planar and radial diffusion in order to assess the

impact of the radius of curvature at the interface on pacing properties. We first validate the

reduction to a cable by examining the threshold behavior for waves propagating from the

ischemic boundary through the excitable cable, and comparing the parametric dependence

with the analogous results from the two-domain simulations.

In the single-domain tissue model, we use the boundary condition at the ischemic end

of the cable as the bifurcation parameter, considering this analogous to a conglomerate

measure of the excitability parameters αisch and γisch from the full model. If the reduced

single-domain replicates the complexity of behavior seen in the two-domain model, we can

use spectral analysis to explain the mechanisms behind the bifurcations observed in the

two-domain simulations. If the single-domain cable model does not replicate the complex

behavior observed in the full model, we will instead speculate on how the distinguishing

properties of the full two-domain system may give rise to fundamentally different results

from those observed in a single-domain cable.

For the single-domain model, we simulate the FHN PDE on an interval [r0, R] represent-

ing an interval (planar diffusion) or an annulus (radial diffusion). The parameters in the do-

main correspond to an “excitable” medium in the FitzHugh-Nagumo system (α = 0, γ = 1.5).

We explore both Neumann and Dirichlet boundary conditions to attempt to explain the be-

havior in the two-domain system. In the single-domain model, Neumann nonhomogeneous
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boundary conditions represent constant flux ISAN through the point r0 from the ischemic re-

gion. Dirichlet boundaries represent a pinned point V (r0) = V0 at the interface between the

ischemic and excitable region. As in the 2-domain study, Neumann BCs more appropriately

reflect radial symmetry, while Dirichlet BCs assume that the ischemic region is sufficiently

large that the interface remains at an approximately constant membrane potential. In the

1-domain study, however, neither boundary condition allows for fluctuations in both the

membrane potential and flux in the ischemic region.

First, we use the Neumann boundary condition ∂V
∂r r=r0

∣∣ = ISAN to represent current

traveling from the SAN or ischemic region into the excitable region. The curvature and size of

the internal ischemic or pacemaking region are captured by the boundary value r0, the radius

at the interface between the two regions. We assess the overall dependence of frequency of

action potentials propagating through the tissue on ISAN and r0. The parameter ISAN is used

as a bifurcation parameter. We compare planar with radial diffusion to investigate how, with

radial diffusion, a small r0 (high curvature or small ischemic region) affects the threshold I∗SAN

at which a Hopf bifurcation occurs, leading to the onset of periodic propagating waves. We

also investigate how curvature influences the size of the region of parameter space over which

periodic propagating waves occur. We verify the results of these simulations by analyzing the

eigenvalues and eigenfunctions associated with the Hopf bifurcation at which the stationary

solution to the PDE destabilizes into oscillations.

Next, we use the Dirichlet boundary condition V (r0) = V0 to represent a depolarized

ischemic region functioning as a current source. As in the Neumann case, we use the param-

eter V0 as a bifurcation parameter. We investigate how both V0 and r0 affect the frequency of

periodic oscillations throughout the tissue. Simulations are verified by the spectral properties

of the system at the Hopf bifurcation.

Comparison between the one- and two-domain PDE studies indicates that, while the

Dirichlet boundary is insufficient to produce propagating waves through an excitable region,

the case with Neumann boundary condition exhibits some (but not all) of the pacing schemes
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present in the full two-dimensional model. In the regions of parameter space in which the

single-domain cable model does provide analogous results to those seen in the two-domain

model, we use the spectral properties of the PDE to attempt to explain the bifurcations

observed in simulations.

4.4.2. Mathematical Setting: 1D model. We are interested in the threshold be-

havior for waves that propagate through the excitable region, and in particular, how the

threshold for periodic waves depends on the curvature or relative size of the ischemic region

at the ischemic-excitable interface (in this case, at the innermost boundary). First we reduce

the ischemic region as a Dirichlet boundary, i.e., fixed at a depolarized membrane potential,

which represents an ischemic region with sufficiently robust source current or insulation to

prevent hyperpolarization despite the electrotonic load of the excitable region. Second, we

model the ischemic region as a nonzero Neumann boundary, i.e., a constant current input.

We analyze the relationship between the boundary condition representing excitability in

the ischemic/oscillatory region, the curvature or relative size r0 at the oscillatory/ischemic

region at the interface between the two regions, and the existence and stability of periodic

waves propagating from the ischemic/oscillatory boundary through the excitable region. As

in the two-domain model, we account for the effects of size and curvature at the interface by

comparing results between identical systems using the radial diffusion operator versus the

standard planar diffusion operator.

The planar diffusion case consists of the FHN PDE on the interval x ∈ [r0, L]:

∂v

∂t
= D∆v + f(v)− w(4.2)

∂w

∂t
= ε(v − γ(x)w − α(x))

where f(v) = −v(v − 1)(v − a), with a = 0.13; γ = 1.5, and α = 0.

In the radial diffusion case, we take an annulus r ∈ [r0, L] with l > 0 small, and simulate

the system
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∂v

∂t
= D

(
∂2v

∂r2
+

1

r

∂v

∂r

)
+ f(v)− w(4.3)

∂w

∂t
= ε(v − γ(r)w − α(r))

where again f(v) = −v(v − 1)(v − a), with a = 0.13; γ = 1.5, and α = 0. For the Dirichlet

BC study, we define V0 = v(r0) and allow V0 to vary over a wide range of values. Similarly, in

the Neumann BC study, we take ∂r
∂r

∣∣
r=r0

= ISAN and allow ISAN to vary. As in [69], we set L

to 256; the planar diffusion case corresponds to an interval of length L− r0, while the radial

diffusion case corresponds to an annular slice of a radially symmetric domain with inner

radius r0 and outer radius L. We compare the results between planar and radial diffusion

by choosing r0 = 15, sufficiently small that the effect of the radial diffusion operator on

solutions is noticeable. We are interested in periodic traveling waves, the threshold of their

onset, and how the curvature or size r0 affects threshold behavior and wave propagation.

In each scenario, we attempt to answer the question of which behaviors of the two-

domain model (i.e., fig. 4.6) can be explained by each reduced 1D model. We then analyze

the spectral properties of the system, by computing the stationary steady state and lineariz-

ing around it as described below (taken from [56] and [69]), and use the behavior of the

eigenvalues and eigenfunctions to help explain the results seen in the simulations.

There is a stationary solution (φ(x), η(x)) to the planar diffusion system in which φ(x)

solves the 2nd order ODE

D∆φ−
(
f(φ) +

φ− α
γ

)
= 0

and, ∂w
∂t

= 0 implies that η(x) = φ−α
γ

. We seek to identify the stationary solution and its

stability, as well as how its stability depends on parameters and boundary conditions. It was

established in [35] and [56] that the stationary solution destabilizes via a Hopf bifurcatiion

for certain values of α; [69] expanded this work to account for radial diffusion in a domain
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with curvature. Therefore, we expect that the oscillations that produce periodic propagating

waves arise from the destabilization of the stationary solution in a Hopf bifurcation.

In order to characterize the stability of the stationary solution, we first use MATLAB’s

fsolve function to identify the constant-in-time solution (φ(x), η(x)) to (4.2). We then

linearize around (φ(x), η(x)) by assuming v = φ + eλtψ(x) and w = η + eλtξ(x), and obtain

the following ODE for ψ(x):

(4.4) −D∂
2ψ

∂x2
+ f ′(φ(x))ψ +

[
λ+

ε

λ+ εγ

]
ψ = 0

We solve for λ and ψ(x) by evaluating the Jacobian of (4.2) at (φ(x), η(x)) and then using

MATLAB’s eig function to identify the eigenvalues and eigenvectors of the Jacobian.

In the radial diffusion case, the stationary solution ϕ(r) solves the modified ODE

D∆ϕ+
1

r

∂ϕ

∂r
−
(
f(ϕ) +

ϕ− α
γ

)
= 0

which results in a modified linearization for which the eigenfunction χ(r) solves the equation

(4.5) −D
(
∂2χ

∂r2
+
∂χ

∂r

)
+ f ′(ϕ(x))χ+

[
λ+

ε

λ+ εγ

]
χ = 0

As with planar diffusion, we use fsolve to identify the stationary solution, evaluate the

Jacobian of (4.3) at the stationary solution, and use eig to find the eigenvalues and eigen-

vectors of the Jacobian. We analyze the eigenvalues λ of this system with greatest real parts,

and how they depend on parameters. We examine both Neumann and Dirichlet boundary

conditions: in the Dirichlet case, the boundary condition is V0 = V (r0) and in the Neu-

mann case ISAN = ∂v
∂r

∣∣
r0

in the Neumann case. In both scenarios, the boundary condition is

considered as the main bifurcation parameter.
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Figure 4.8. The three eigenvalues with largest real part γ1, γ2 and γ3 of the
Jacobian at the stationary solution to (4.2) (A,B) and (4.3) (C, D) with Dirich-
let boundary condition V0 = 0.9. The eigenvalues depend on the parameter
γexc, which determines whether or not oscillations arise in the excitable region.
Periodic traveling waves are observed when the real part of one eigenvalue be-
comes positive, i.e., for γ ≥∼ 4.5 in the radial diffusion case and γ ≥∼ 3.5 in
the planar diffusion case.

4.4.3. Results.

4.4.3.1. Dirichlet BCs. In the Dirichlet boundary case, under the parameters described

in [69] with γexc = 1.5, αexc = 0, the ischemic region is unable to pace the excitable region for

any boundary condition V0 (data not shown). This is confirmed by the eigenvalues for the

system, all of which have negative real part. On the other hand, if we fix V0 = 0.9 and vary

γexc, we observe that there is a Hopf bifurcation as γexc is varied closer to the threshold of

bistability; at γexc ≈ 4.2 in the radial diffusion system and γexc ≈ 3.3 in the planar diffusion

system, the eigenvalue with highest real part crosses the imaginary axis so that its real part

is positive (fig. 4.8 A, C). Beyond this threshold the ischemic region is able to pace the

excitable region.
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Because the Dirichlet boundary condition is unable to excite an atrial region with γ = 1.5,

α = 0 for any fixed voltage V0, we conclude that the Dirichlet system does not capture the

dynamics of the full two-domain model. This suggests that the existence of traveling waves,

and the complexity of parameter dependence captured in fig. 4.6, requires flexibility at the

interface between the SAN (or ischemic region) and the atrium (or excitable region).

4.4.3.2. Neumann BCs. With a Neumann boundary condition ISAN = ∂v
∂r

∣∣
r0

, ISAN rep-

resents current flowing into the excitable region from an ischemic or oscillating region.

In a one-dimensional domain x ∈ [r0, L] with Neumann boundary conditions ∂u
∂x

∣∣
x=r0

=

ISAN at one end and ∂u
∂x

∣∣
x=L

= 0 at the opposite end, the injected current ISAN paces

the tissue under some parameter conditions dependent on ISAN . We capture the overall

behavior over a range of parameters in figure 4.9A. When ISAN is too small (below ∼ 0.15),

the ischemic boundary is unable to pace the excitable cable. As ISAN passes this threshold

and continues to increase, frequency abruptly jumps to a high value (≈ 0.025), continues to

increase slightly, and then abruptly drops to approximately half its value around ISAN = 035.

Finally, for ISAN > 0.55, no pacing occurs.

In the one-dimensional effectively annular domain r ∈ [r0, L] with Neumann boundary

conditions ∂u
∂r

∣∣
r=r0

= ISAN at the inner radius and ∂u
∂x

∣∣
x=L

= 0 at the outer radius, pacing

depends on both ISAN and r0 (fig. 4.9B). For r0 too small (below ∼ 5), no pacing occurs.

As with planar diffusion, for ISAN either too small or too large (below ∼ 0.15 or above

∼ 0.55), the boundary is unable to pace the excitable tissue. Between these parameter

regimes, there is a region over which pacing occurs. Within the area of parameter space

in which the ischemic boundary can produce propagating periodic waves, there are distinct

regions of different frequencies. For fixed r0, as ISAN increases, the onset of waves occurs

with a frequency ≈ 0.03, followed by a period-halving transition to a frequency ≈ 0.015 at

ISAN ≈ 0.35, and finally a transition back to wave block. As r0 increases beyond ∼ 35, the

sizes of parameter regions in which 1:1 and 1:2 pacing occur remain fixed.
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Figure 4.9. A Neumann oundary condition representing injected current
from the SAN or an ischemic region can successfully pace a length of ex-
citable tissue in some parameter conditions. Notably, with planar diffusion
(A) as ISAN increases from 0, the system undergoes a Hopf bifurcation at the
onset of oscillations, followed by a period doubling behavior, before the oscil-
lations cease. With radial diffusion (B), the system also undergoes the onset,
period-doubling, and cessation of oscillation as ISAN increases; however, for
sufficiently small r0, only half-frequency pacing occurs, and for r0 too small
there is no pacing.

The behavior in each of the four regions in fig. 4.9 is summarized by space-time plots

in fig. 4.10. In region 1 (fig. 4.10A), 1:1 pacing occurs, wherein oscillations arise at the

inner boundary and propagate through the tissue. In regions 2 and 3 (fig. 4.10B and C), a

single wave propagates from the inner radius through the domain, followed by wave block.

In region 4 (fig. 4.10) we observe behavior analogous to 2:1 pacing, in which a small area

near the inner boundary exhibits oscillations in membrane potential, and every other one of

these oscillations results in an action potential wave propagating throughout the medium.

The results of fig. 4.10 are to some extent comparable with those in the two-domain

analogue fig. 4.7, although the comparison is incomplete. While region 1 (1:1 pacing) in
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Figure 4.10. Space-time plots for the 1D, 1-domain model where the Neu-
mann boundary condition ISAN = ∂v

∂r
(r0) is used to represent input from the

SAN into the excitable region. Panels correspond to the four regions of param-
eter space defined in fig. 4.9. In region 1, 1:1 pacing occurs, while in regions
2 and 3 there is block. In region 4 there is 2:1 pacing.

the single-domain model corresponds well to region 1 in the two-domain model, comparison

between the other regions is less obvious. In both regions 2 and 3 of the single-domain

model, the ischemic boundary is able to propagate one initial wave throughout the domain,

whereas in region 3 of the two-domain model even this initial wave is blocked. Thus, both

regions 2 and 3 of fig. 4.10 correspond more appropriately to region 2 of fig. 4.7. Moreover,

region 4 of fig. 4.10 may correspond to either region 4 or region 5 of fig. 4.7, given that

the fluctuations within the oscillatory/ischemic region in the two-domain model cannot be

observed in the single-domain setup.

We further analyze the behavior of the 1D system by examining the spectrum of the

linearization 4.4.2 in the planar domain with Neumann boundary conditions (fig. 4.11). At

the onset of oscillations (ISAN ≈ 0.15), the system undergoes a Hopf bifurcation at which a

105



Figure 4.11. Eigenvalues corresponding to the stationary solution in a 1D
domain of length 256 with r0 = 5 and Neumann boundary condition ISAN at
r0. A: as ISAN varies, the real part of one eigenvalue crosses the imaginary
axis. B: the real part of one eigenvalue is positive when ISAN is between
approximately 0.17 and 0.6, corresponding to the parameter regime in which
oscillations occur. C: The imaginary part of the eigenvalue whose real part is
positive is approximately 0.6 at the Hopf bifurcation, indicating a frequency
of oscillations ≈ 0.6.

copmlex conjugate pair of eigenvalues crosses the imaginary axis, destabilizing the stationary

solution. Oscillations occur in the system while the greatest real part of a complex eigenvalue

is positive, which occurs when ISAN is between approximately 0.17 and 0.6. The frequency

of the oscillations at the onset is equal to the imaginary part of the corresponding eigenvalue

whose real part is positive, and therefore is approximately 0.06 for the parameters given (fig.

4.11C).

In order to assess the effects of curvature on wave propagation, we compare the spectrum

for the linearization in the planar diffusion case to that in the radial diffusion case (4.4.2)

with r0 = 5, sufficiently small to observe effects on systemic behavior due to curvature. With
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Figure 4.12. Eigenvalues corresponding to the stationary solution in an an-
nular domain [r0, R] of width 256 with Neumann boundary condition ISAN
at the smaller-radius end r = r0. A: as ISAN varies, the real part of one
eigenvalue crosses the imaginary axis. B: the real part of one eigenvalue is
positive when ISAN is between approximately 0.28 and 0.58, corresponding to
the parameter regime in which oscillations occur. C: The imaginary part of
the eigenvalue whose real part is positive is approximately 0.6 at the Hopf
bifurcation, indicating a frequency of oscillations ≈ 0.6.

Neumann boundary condition ∂u
∂r

∣∣
r=r0

= ISAN at the inner radius r0, the system undergoes

a Hopf bifurcation at which one eigenvalue crosses the imaginary axis, destabilizing the

stationary solution, as the boundary condition ISAN increases (fig. 4.12). Oscillations occur

in the system when the greatest real part of an eigenvalue is positive, which occurs when

ISAN is between approximately 0.28 and 0.58. The frequency of the oscillations at the onset

is equal to the imaginary part of the corresponding eigenvalue whose real part is positive,

and therefore is approximately 0.6 for the parameters given (fig. 4.12C).

Comparison between figures 4.11 and 4.12 suggests that radial diffusion with small r0,

representing an ischemic or oscillatory region that is small or has high curvature at the
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boundary, shifts the range of parameters in which pacing occurs toward higher ISAN . That

is, for a smaller ischemic region, higher current is required at the inner radius in order to

generate periodic waves that propagate through the excitable region. Moreover, the range

of ISAN over which propagating periodic waves occur is narrower in the radial diffusion case

than in the planar diffusion case, suggesting that the strength of source current must be

more finely-tuned for a smaller icshemic/oscillatory region to produce periodic waves than a

larger ischemic/oscillatory region.

Interestingly, the results in a 1D cable where the excitable region is stimulated by only a

Neumann or Dirichlet boundary condition exhibit qualitatively different behavior from the 2-

domain case. The ischemic region reduced to a Dirichlet boundary fails to pace the excitable

region over all values of V0. Reduction of the ischemic region to a Neumann boundary results

in pacing, but the qualitative relationships between parameters and frequency are markedly

different from the full 2-domain case. The discrepancy of results between the 2-domain

system and the 1-domain cable highlights the necessity of the independent, but coupled

behavior of the two domains, and hints at the importance of the interface between the

ischemic and the excitable regions: if the voltage or the flux at this point must be dynamic

rather than fixed in order to capture accurate results, then a fixed boundary condition will

change the qualitative behavior of the system.

4.5. Simulations and analysis in a two-cell ODE model

4.5.1. Approach. We use a reduced ODE model to gain insight regarding the size and

relative excitability of the SAN and atrium and the net coupling strength between them.

The space-clamped model allows us to examine these factors separately from the complexity

of the geometry of the SAN.

Here, we consider a model in which one oscillatory, bistable or monostable depolarized

cell is coupled to one excitable (atrial) cell. This setup can be thought of as a course-grained

or “bulk” model of a region of SAN tissue, or ischemic tissue, coupled to a region of atrial

tissue; if a region of oscillatory tissue can drive a region of excitable tissue to oscillate,
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then this driving must also be theoretically possible in a two-cell model under appropriate

parameter conditions. Similar work has been done before with various configurations and

approaches: see [34] for an exploration of the qualitative types of behavior that can arise

depending on the resistivity parameter, and [52] for an in-depth bifurcation analysis of a

coupled system of an atrial cell with an ischemic cell.

We use the FitzHugh-Nagumo model, with two cells coupled by diffusive conduction:

∂visch
∂t

= f(visch)− wisch + gj

(
rexc
risch

)2

(vexc − visch)

∂wisch
∂t

= ε(visch − γischwisch − αisch)

∂vexc
∂t

= f(vexc)− wexc + gj

(
risch
rexc

)2

(visch − vexc)

∂wexc
∂t

= ε(vexc − γexcwexc − αexc)

The parameter gj represents the conductance between the sinoatrial node and the atrium; ε

is a time constant for the relatively slow refractory variable w(sometimes corresponding to

potassium currents); γ defines the steepness of the potassium activation curve; and α can

be interpreted equivalently as a change in potassium equilibrium potential or an injected

current. The parameters rexc and risch denote the effective radii of the atrial/excitable

cell and the ischemic/oscillatory cell, respectively. We will consider rexc ≥ risch in order to

consider the effects of current from a relatively smaller ischemic or oscillatory region diffusing

into a larger excitable region, which can also be interpreted as mimicking the presence of

positive curvature in the boundary at the interface between the two regions. The cubic

function f(v) is defined, as above, by

f(v) = −v(v − 1)(v − a)
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where a = 0.13. The two-cell model uses the size ratio r = risch/rexc as a coarse represen-

tation of the relative curvature of the boundary between the ischemic and excitable regions.

Positive curvature at the interface in a two-dimensional system results in an excitable re-

gion that is locally larger than the ischemic region; therefore, risch/rexc = 1 corresponds to

a system with planar diffusion, whereas risch/rexc > 1 represents a 2D system with radial

diffusion.

4.5.2. Results. We use a reduced ODE model of two coupled cells with distinct elec-

trical properties to gain insight regarding the relationship between the relative sizes of the

two cells, excitability of the SAN cell, and the ability of the SAN or ischemic cell to pace

the excitable cell. The space-clamped model allows us to examine these factors separately

from the complexity of the geometry of the SAN.

4.5.2.1. Simulations. In the reduced system of two coupled cells, we investigate the role

of the relationship between the relative sizes and the electrical properties of two coupled

cells on the ability of the ischemic cell to pace the atrial cell. We constrain one cell to a

monostable, excitable parameter regime (“atrial” cell), fix the net conductance between the

two cells to gj = 0.05, and vary the parameters αisch and γisch in the second cell (“ischemic”

cell) across the oscillatory and bistable regions of parameter space (see fig. 4.2C).

In our simulations across a range of (αisch, γisch) parameter space, we observe several

regions characterized by distinct behavior in the four-dimensional system (fig. 4.13). For

sufficiently low γisch and moderate αisch, the spontaneously active cell paces the excitable

cell in a 1:1 rhythm (fig. 4.13A and B, yellow regions). When αisch is increased further,

there is a region of period doubling where every other oscillation in the ischemic cell drives

an action potential in the atrial cell (fig. 4.13A and B, green regions). Outside of these

regions, as in blue regions in fig. 4.13, there are no action potentials – this includes some

areas of subthreshold oscillations. The occurrence of 1:1 and 2:1 pacing depend on both the

size ratio between the two regions and on the parameters in the ischemic cell. For two cells

of equal size (fig. 4.13A), when α = 0 corresponding to a monostable or bistable ischemic
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cell, there are no oscillations over a range of γisch values. However, as αisch is increased, there

is a region of (αisch, γisch)-space where 1:1 pacing occurs. That is, each action potential in

the ischemic cell drives an action potential in the excitable cell, and these action potentials

occur periodically. As αisch increases further, there is a region of 2:1 pacing, followed by the

cessation of pacing. For a fixed size ratio of risch/rexc = 0.833, representing positive curvature

at the interface between the ischemic and excitable regions (fig. 4.13B), the qualitative

behavior is similar: when αisch = 0 there are no oscillations. As αisch is increased, there is

a region of (αisch, γisch)-space where 1:1 pacing occurs, and as αisch increases further, there

is a region of 2:1 pacing, followed by the cessation of pacing. In the positive-curvature case,

the range of αisch producing 1:1 pacing narrows, and the range of αisch producing 2:1 pacing

grows toward lower αisch, as compared with the case of equally-sized cells. Moreover, in the

positive-curvature case, the region of 1:1 pacing broadens toward higher γisch values relative

to the same region in the equally-sized cells case.

We next evaluate more precisely how the onset of oscillations depends on the size ratio

risch/rexc between the two cells. We fix αisch at an intermediate value of 0.25 and vary both

γisch and the size ratio between the two cells. The overall dependence of pacing on γisch

and size ratio is complex (fig. 4.14): there is a region of 1:1 pacing and a region of 2:1

pacing, as well as an isolated region of wave block, and the atr:SAN frequency ratio does

not change monotonically as the relative size of the atrial cell increases in comparison to the

size of the oscillatory/ischemic cell. For sufficiently high γisch, no pacing occurs. Similarly,

for sufficiently small ischemic cell, no pacing occurs. When γisch is sufficiently small (below

≈ 8), the oscillatory cell successfully paces a small excitable cell, but increasing the size of

the excitable cell gives rise to period doubling (fig. 4.14, green region). For intermediate

values of γisch (between ≈ 5 and 8), the region of 2:1 pacing disappears and an isolated region

of wave block occurs as the excitable cell’s size grows (fig. 4.14, blue region surrounded by

yellow area). For γisch between ≈ 8 and 10, as size ratio increases from 0.5 to 1 the system

goes from no pacing to 1:1 pacing to no pacing. Thus, toward the higher end of γisch for
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Figure 4.13. Ratio of frequency in ischemic/oscillatory cell to frequency in
excitable cell, with a size ratio of 1 (A) and 0.83 (B), over a range of γisch and
αisch parameter values. Phase-locked pacing and period-doubling behavior
both occur in a two-cell system depending on the relationship between α and
γ in the ischemic cell. When the relative size of the excitable region increases,
the regions of parameter space over which 1:1 and 2:1 pacing occur shift.

which pacing occurs, the γisch threshold for oscillations depends non-monotonically on size

ratio. When size ratio is below ≈ 0.75, oscillation threshold in γisch increases with increased

size ratio; however, for size ratio above ≈ 0.75 oscillation threshold decreases as size ratio

increases.

Notably, the overall behavior of the two-cell model bears a strong resemblance to the

behavior of the two-domain, spatially extended model. In particular, the dependence of

the atrial cell’s frequency on γisch and αisch in the two-cell case (fig. 4.13) follows a similar

qualitative pattern to the dependence of the frequency of the atrial region on the parameters

γisch and αisch in the two-domain model (particularly figs. 4.3 and 4.5). In both the two-cell

and two-domain models, there is a region of (γisch, αisch)-space over which 1:1 pacing occurs;
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Figure 4.14. Ratio of frequency in ischemic/oscillatory cell to frequency in
excitable cell for fixed αisch = 0.25, over a range of γisch and cell size ratio.
For sufficiently high γisch, no pacing occurs. When γisch is sufficiently small,
a large oscillatory cell paces an excitable cell, but reducing the size of the
oscillatory/ischemic cell gives rise to period doubling. Further reduction of
the ischemic cell size, for small γisch, leads to subthreshold oscillations. For
intermediate values of γisch, a region of wave block occurs between r ≈ 0.72
and r ≈ 0.98.

increasing αisch slightly with sufficiently small γisch results in 2:1 pacing; outside of these

regions there is wave block. Most importantly, in both the full PDE and the two-cell model

there is non-monotonic dependence of the threshold in γisch on curvature of the ischemic

region. The similarity of these qualitative phenomena suggest that the atrial frequency,

and the occurrence of 1:1 vs. 2:1, 1:0 or 0:0 pacing, are primarily determined by the bulk

properties of current conduction between an oscillatory or bistable cell and an excitable cell.

4.5.2.2. Analysis.

Phase Plane Analysis

In order to analyze the mechanisms that drive the distinctions between different behaviors

observed in our simulations, we study the phase plane for examples of the system in each
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region of fig. 4.14. In figures 4.15 and 4.16, we visualize the time course for the voltage of

each cell as well as the (v, w) phase plane for each cell when the size ratio risch/rexc = 0.74.

When γisch = 11, in simulations, we observe two steady states for the system: (1) de-

polarization block, in which the SAN or ischemic cell rests at a depolarized potential while

the excitable cell remains at its hyperpolarized resting state, and (2) wave block, in which

both cells remain fixed at a hyperpolarized value. In fig. 4.15, we simulate the system with

two different initial conditions. Panels A-C use an initial condition close to the depolariza-

tion block steady state, while D-F use an initial condition farther away from depolarization

block. Panel A shows the (visch, wisch) phase plane for the ischemic cell, with nullclines cor-

responding to no coupling (solid lines), visch nullcline with coupling current at the maximal

voltage difference attained between the two cells in simulations (dashed line), and v nullcline

at the final time-point of the simulation (dotted line). Panel B shows the (vexc, wexc) phase

plane for the excitable cell. Panel C shows the time course for the membrane potentials of

the ischemic cell (blue) and excitable cell (red). As shown in fig. 4.15A, the depolarization

block steady state is characterized by the fact that the ischemic cell remains at an elevated

(depolarized) membrane potential over time; the excitable cell never exerts enough hyper-

polarizing “sink” current to destabilize this depolarized steady state. In contrast, when the

initial difference between membrane potentials for the two cells is greater – as in fig. 4.15

D-F – the excitable cell exerts a stronger hyperpolarizing force on the ischemic cell, thereby

pulling the visch nullcline down farther (compare dashed curves in fig. 4.15 panel A and panel

D). This destabilizes the depolarized steady state for the ischemic cell, allowing the ischemic

cell to hyperpolarize. With both cells hyperpolarized, the coupled visch nullcline shifts back

up toward the solid curve in fig. 4.15D, and the coupled vexc nullcline shifts toward the

solid curve in panel E. Both cells reach an intermediate level close to hyperpolarization at

the dotted nullclines in fig. 4.15 panels D and E. At this point, neither cell exerts a strong

enough influence to elicit an action potential, and so both cells remain hyperpolarized, in

the “wave suppression” steady state.

114



Figure 4.15. When γisch = 11 and risch/rexc = 0.74, there is bistability be-
tween depolarization block and wave block. A-C use an initial condition close
to depolarization block, while D-F use an initial condition with more depo-
larized visch and more hyperpolarized vexc. A, D: phase plane for (visch, wisch)
uncoupled (solid lines), coupled with maximal current in simulation (dashed
curve), and coupled with current from the final time-point in simulations (dot-
ted curve). B, E: as in A and D for (vexc, wexc). C, F: time-course of visch (blue)
and vexc (red) for the two initial conditions. In C, visch remains depolarized,
while in F, both cells hyperpolarize.

When γisch = 9, we again observe two distinct qualitative behaviors depending on the

initial condition. When the initial condition is close to depolarization block, the ischemic cell

becomes fixed at a depolarized membrane potential; the excitable cell remains at its hyper-

polarized resting potential, but does not exert sufficient hyperpolarizing coupling current to

pull the ischemic cell away from the depolarized steady state. In contrast, when the initial

difference between membrane potentials for the two cells is greater, as in fig. 4.16 D-F, the

excitable cell exerts a stronger hyperpolarizing force on the ischemic cell. The hyperpolar-

ized excitable cell in its “recovery” phase pulls the visch nullcline down farther (compare

dashed curves in fig. 4.16 panel A and panel D), destabilizing the depolarized steady state

for the ischemic cell. This allows the ischemic cell to hyperpolarize, at which point both
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Figure 4.16. When γisch = 9 and risch/rexc = 0.74, there is bistability be-
tween depolarization block and 1:1 pacing. A-C use an initial condition close
to depolarization block, while D-F use an initial condition with more depo-
larized visch and more hyperpolarized vexc. A, D: phase plane for (visch, wisch)
uncoupled (solid lines), coupled with maximal current in simulation (dashed
curve), and coupled with current from the final time-point in simulations (dot-
ted curve). B, E: as in A and D for (vexc, wexc). C, F: time-course of visch (blue)
and vexc (red) for the two initial conditions. In C, visch remains depolarized,
while in F, both cells exhibit periodic action potentials in a 1:1 pattern.

cells are at similar membrane potentials and the coupling current therefore becomes very

small. With a smaller coupling current, the coupled visch nullcline shifts back up toward

the solid curve in fig. 4.16D, such that the ischemic cell is past its excitation threshold and

immediately fires an action potential. This triggers an action potential in the excitable cell,

which subsequently undergoes its own recovery and hyperpolarization process. The sequence

then repeats, leading to oscillations (fig. 4.16F).
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Bifurcation Analysis

We linearize around each steady state – wave suppression and depolarization block – and

use the eigenvalues of the system at each point to assess the stability of the steady state over

a range of r values, as well as to examine how the bifurcations in r shift as γisch changes

(fig. 4.17). We define the parameter Vss as the value of the membrane potential of the

ischemic cell (visch) at the steady state. For γisch = 4 (blue curve), there is one steady state,

which is stable for low r, or a small ischemic cell, undergoes a subcritical Hopf bifurcation

(HB) at r ≈ 0.56, and is unstable for higher r. The single steady state for γisch = 4 occurs

at hyperpolarized membrane potential for low r, corresponding to wave suppression, but

Vss increases with r toward “depolarization block” (Vss > 0.5) for r closer to 1. As γisch

increases to 7, the two steady states separate from each other in v (red curve in fig. 4.17).

The wave block steady state approaches Vss ≈ 0 as the depolarization block steady state

approaches Vss ≈ 1. The depolarization block steady state is stable at high r, but undergoes

a subcritical Hopf bifurcation and destabilizes as r decreases. As γisch increases, the range

of size ratios r over which each steady state is stable widens; the HB for wave suppression

shifts toward higher r while the HB for depolarization block shifts toward lower r (compare

red curve with yellow and purple curves in fig. 4.17). As γisch increases further, the two HBs

continue to shift independently of each other as the range of r values over which each steady

state is stable widens (fig. 4.17 thick segments of each curve), and the unstable steady-state

curve in the intermediate range of r folds (fig. 4.17 thin segments of each curve). For γisch

above ≈ 8, there is a region of bistability between the two steady states.

We similarly use the eigenvalues of the system to assess the stability of each steady state

over a range of γisch values for a fixed size ratio r, and to assess how the bifurcations in γisch

shift as r changes (fig. 4.18). When r = 1 (purple), there is one steady state at depolarization

block, which is stable for high γisch and destabilizes in a Hof bifurcation as γisch decreases to

≈ 5. For r = 0.83 (yellow curves), the HB for depolarization block shifts to slightly higher

γisch, and a second branch steady states appears at lower Visch. The lowest steady state is
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Figure 4.17. Bifurcation diagram in r for steady state values of Visch in
the two-cell FHN ODE, for four different values of γisch. Thick and thin
segments of each curve denote stable and unstable steady states, respectively.
For γisch = 4 (blue), there is one steady state, which is stable for low r and
undergoes a subcritical Hopf bifurcation at r ≈ 0.56 (HB). As γisch increases,
the two steady states corresponding to wave suppression and depolarization
block separate from each other in v (red). As γisch increases further, the range
of r values over which each steady state is stable widens as the two HBs shift
toward each other and then cross, and the intermediate range of r folds (yellow
and purple curves). For γisch above ≈ 8, there is a region of bistability between
the two steady states.

stable for high γisch between ≈ 14 and 15, destabilizing in a HB at γisch ≈ 14. of As r

decreases further to 0.67 (red curves), the intermediate branch of steady states breaks from

the lower curve of steady states and joins the upper curve, while the two HBs both shift

closer together, toward more intermediate γisch. Finally, when r = 0.5 (blue), the upper

branch of steady states disappears, leaving only the “wave block” steady state, which is

unstable for low γisch and undergoes an HB at γisch ≈ 2.
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Figure 4.18. Bifurcation diagram in γisch for for steady state values of Visch in
the two-cell FHN ODE, for four different values of r. Thick and thin segments
of each curve denote stable and unstable steady states, respectively. When
r = 1 (purple), there is one steady state at depolarization block, which is
stable for high γisch and destabilizes in a subcritical Hof bifurcation as γisch
decreases to ≈ 5. For r = 0.83 (yellow curves), the HB for depolarization
block shifts to slightly higher γisch, and a second branch steady states appears
at lower Visch. The lowest steady state is stable for high γisch between ≈ 14
and 15, destabilizing in a HB at γisch ≈ 14. of As r decreases further to 0.67
(red curves), the intermediate branch of steady states breaks from the lower
curve of steady states and joins the upper curve, while the two HBs both
shift closer together, toward more intermediate γisch. When r = 0.5 (blue),
the upper branch of steady states disappears, leaving only the “wave block”
steady state, which is unstable for low γisch and undergoes an HB at γisch ≈ 2

The result in fig. 4.18 suggests an explanation for the surprising result in [69]: as

curvature increases, the subcritical Hopf bifurcation associated with depolarization block

shifts toward higher γisch. This leads to the existence of a limit cycle in the portion of

(γisch, r) space in which depolarization block is stable. Farther from the HB, the limit cycle

becomes stable, generating stable oscillations in the system. These oscillations terminate in
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a separate bifurcation, which occurs at higher γisch when curvature is higher. Based on the

parameter conditions and boundary values used in [69], we expect that their system was

restricted in a way that emphasizes the behavior associated with depolarization block, while

omitting the threshold properties associated with the instability of the wave block steady

state. Our results therefore generalize and contextualize theirs.

We compile and synthesize the results from our two-cell model and analysis in fig. 4.19.

Results of our simulations are shown in the heatmap as in fig. 4.14, with yellow regions

denoting 1:1 periodic action potentials, green region denoting 2:1 action potentials, and blue

regions denoting no action potentials (or subthreshold oscillations). The curves denoting the

locations of the Hopf bifurcations (HBs) for each of the two steady states – wave suppression

and depolarization block – are shown in gray. Pink curves delineate the boundaries of regions

of 1:1 periodic behavior of the system identified by XPPAUTO [20], which are bounded

by different bifurcations in different regions of parameter space. Dotted pink lines denote

estimated locations of bifurcations that the solver was unable to resolve. The simulated

behavior of the system aligns well with the underlying bifurcations. Notably, the two Hopf

bifurcations occur independently; while the HB curve for wave suppression slopes up, as is

consistent with sink-source balance intuition, the HB curve for depolarization block slopes

down, as in Teplenin [69]. The locations of each curve and their intersection justify the

existence of bistability between the two steady states for high γisch and moderate r. We

also observe bistability between depolarization block and oscillations for a small region of

moderate r and moderate γisch (yellow wedge shape bounded by pink and gray curves, for

7 ≤ γ ≤ 11 and 0.67 ≤ r ≤ 0.85), as explained by the phase plane in fig. 4.16. While the

lower boundary of this region is defined by the curve corresponding to the wave block Hopf

bifurcation, the upper boundary of the region at which the oscillations terminate (pink curve

at upper right boundary of yellow wedge) is defined by a second, unidentified bifurcation.

We expect that this portion of the pink curve is defined by a saddle-node of periodics (SNP)

bifurcation, because simulations in this section show that the oscillations arise with both a
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Figure 4.19. Two-parameter bifurcation diagram in γisch and r superim-
posed on simulated results. Background: simulated results with regions of
1:1, 2:1, 1:0, and 0:0 pacing as in fig. 4.14. Gray curves are locations of the
subcritical Hopf bifurcation for each of the two steady states. Pink curves
outline the regions of 1:1 periodic oscillations as predicted by bifurcations in
the system.

characteristic amplitude and frequency, and the limit cycles arising from both HBs may exist

in this region of parameter space. The negative slope of the pink SNP curve is therefore

related to the negative slope of the dark gray curve corresonding to the subcritical HB for

depolarization block, as the limit cycle arising from the HB gives rise to the oscillations that

terminate at the SNP bifurcation. Thus, the negative slope of the threshold for the onset of

oscillations for sufficiently high r is dependent on the existence of the “depolarization block”

steady state. Finally, for lower γisch, the pink curve denoting the boundary of the region

of 1-1 oscillations at relatively high r is defined by a period-doubling bifurcation (fig. 4.19

label ”PDB”), which should be analyzed further.
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4.6. Discussion

Results from the two-dimensional, two-domain PDE show a complex array of pacing

outcomes depending on both the curvature and the excitability of the ischemic/oscillatory

region. It is clear that under some parameter regimes, the geometry of a spontaneously active

region has a nontrivial impact on its pacing properties. This impact is not monotonic: in

some excitability regimes, increased curvature increases the threshold for the onset of oscilla-

tions, while in other parameter regimes, increased curvature decreases the threshold for the

onset of oscillations. The former result is consistent with source-sink balance intuition [66],

while the latter is in line with the counterintuitive result in [69] in which waves propagate

from corners of a bistable region. Moreover, we observe both period-doubling and grad-

ual period-increase transitions in distinct regions of parameter space. Our systematic PDE

study is limited to radially symmetric domains, and therefore cannot fully explain the alter-

nating edge-corner wave phenomenon observed in our simulations of square and triangular

oscillatory regions. Rather, the complex dependence of pacemaking on both curvature and

excitability suggests that the alternation phenomenon may arise as a result of the interplay

of multiple mechanisms.

The results of our two-domain PDE simulations also help to explain and provide broader

context for the counterintuitive finding in [69]. We demonstrate that indeed, in some pa-

rameter regimes, waves are expected to propagate from corners. In particular, we find that

curvature destabilizes the stationary solution especially when the size of the ischemic region

is moderate – not too small – and the excitability parameters are closer to the “bistable”

regime of the FitzHugh-Nagumo system, characterized by high γisch. Given that Teplenin

et al. use a moderate inner annular radius and a highly bistable ischemic region for their

simulations and analysis, their result is consistent with our more general findings.

The results of our spatially extended single-domain model do not fully capture the dynam-

ics of the two-domain model with either the Neumann or the Dirichlet boundary condition.

In the single-domain model, simulations with the Dirichlet boundary condition only allow
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the ischemic region to pace the excitable region when the excitable region is sufficiently close

to exhibiting bistability, suggesting that in order for pacing to occur, the interface between

the two regions must be able to oscillate. With a Neumann boundary condition, the 1D

model describes regions of wave block and both 1:1 and 1:2 pacing. However, the Neumann

1D model does not capture the non-monotonicity of the changes to the γisch threshold for

oscillations with respect to r0, as we observed the two-domain PDE simulations. The single-

domain model also only exhibits one stable stationary solution, and therefore fails to capture

the difference between “depolarization block,” the steady state in which the ischemic region

remains at a depolarized potential, and “wave suppression,” the steady state in which both

the ischemic and excitable regions remain hyperpolarized. The fact that the reduction of

the ischemic/oscillatory region to a boundary condition renders the model incapable of re-

producing the results seen in the two-domain results suggests that the dynamic properties

of the ischemic region are key to the complexity of behavior observed in the full model.

The qualitative behavior of the full two-domain PDE system, particularly with homoge-

neous Neumann boundary condition at l, is captured remarkably well by the two-cell model.

In particular, we focus on the relationship between parameters (γisch, αisch) and the ability

of the ischemic cell or region to drive periodic action potentials through the excitable cell

or region. The comparison between planar and radial diffusion cases in the two-cell model

(fig. 4.13A and B) analogous to the same comparison in the two-domain Neumann bound-

ary condition model (fig. 4.5A and B). Moreover, the relationship between γisch, r, and the

onset of oscillations in the two-cell model (fig. 4.14) is analogous to the same relationship in

the two-domain PDE with Neumann BCs (fig. 4.6). In both models, reducing the relative

size of the ischemic region – analogously, increasing the curvature of the ischemic region –

results in an increase in the maximum value of γisch at which oscillations occur, as well as

a widening of the range of γisch over which pacing occurs, for a moderately large ischemic

region. This can be compared to the findings in [69], where it is noted that increased cur-

vature results in a higher value of γisch at which oscillations arise as γisch is decreased from
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a highly bistable value. However, our study additionally finds that for a sufficiently small

ischemic region, increasing the size of curvature increases the width of the range of γisch over

which pacing occurs. The latter trend is consistent with the conventional argument, based

on source-to-sink ratio, that a current source with lower positive curvature is more likely to

generate waves.

In the two-cell model, using both simulations and bifurcation analysis, we find that rel-

ative oscillatory/ischemic cell size – representing curvature at the interface – influences the

ischemic cell’s ability to pace the excitable cell in a complex manner. We observe two steady

states in the system, which we refer to as “wave suppression” and “depolarization block”:

in the “wave suppression” steady state, both cells remain fixed at hyperpolarized resting

potentials; in the “depolarization block” case, the excitable cell remains at its resting po-

tential, while the ischemic cell rests at a depolarized potential. Each steady state undergoes

a separate, subcritical Hopf bifurcation (HB) depending on both the size ratio between the

two cells and the excitability of the ischemic cell. The two Hopf bifurcations occur indepen-

dently of one another, and the threshold γisch for the two HBs depend on curvature in an

opposite manner. While increased curvature decreases the threshold γisch for a HB of the

wave suppression steady state, increased curvature increases the threhsold of γisch for a HB

in the depolarization block steady state. The latter trend aligns with the result from [69],

as they find that a stationary solution is destabilized at higher γisch for higher curvature.

However, the threshold behavior for the “wave suppression” steady state affirms the conven-

tional wisdom that a higher source:sink ratio increases the propensity for oscillations. We

therefore expect the results of [69] to apply in the subset of cases in which depolarization

block is an attainable steady state.

In addition to the two steady states, we also observe a stable limit cycle in some pa-

rameter regimes, in which periodic action potentials occur consistently in both cells. In

some parameter regimes, this stable limit cycle coexists with the stable depolarization block

steady state. As γisch increases, the limit cycle disappears and the system exhibits bistability
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between the two steady states. For sufficiently low γisch, neither steady state is stable, and

instead periodic action potentials are the only stable manifold of the system. In this param-

eter regime, we observe period-doubling wherein 1:1 oscillations transition to 2:1 oscillations

as the relative size of the ischemic cell decreases.

The results from the two-cell system suggest the conditions in which a small ischemic

region might be at greater risk for producing ectopic beats. When curvature is high, i.e.,

when the ischemic region is small, the depolarization block steady state is more likely to

destabilize in oscillations. Thus, a small ischemic region with parameters in the regime for

depolarization block (primarily high γisch) is more likely to produce ectopic beats than a

small region with, say, lower γisch and higher αisch, closer to the oscillatory regime. Finally,

due to the non-monotonic dependence of the threshold defining the onset of oscillations on

r, our results suggest the existence of an “optimal” size, at the intersection of the two curves

of opposite slope defining the threshold for the onset of oscillation. At this intermediate size,

oscillating waves are most likely to arise via the destabilization of either steady state.

The “depolarization block” steady state observed in both the two-cell and two-domain

models seems to play an essential role in the counterintuitive dependence of oscillation thresh-

old on curvature. In the two-cell model, we show explicitly that this steady state exhibits

negative dependence of the HB threhsold on curvature, as opposed to positive dependence

for the “wave suppresion” steady state. In line with this pattern, in our PDE simulations the

far-field hyperpolarized Dirichlet boundary of V (L) = 0 appears to make a large difference to

the behavior of the system. In some cases, oscillations arise as a result of the fixed, hyperpo-

larized boundary pulling the neighboring region of tissue down from an elevated, depolarized

level. Indeed [69] uses this fixed hyperpolarized boundary at the ischemic-excitable inter-

face, and explains the counterintuitive result with a similar “backward wave” description.

In our two-cell model as well, the depolarization block phenomenon is eliminated when the

excitable cell becomes sufficiently large that its coupling current can “pull” the bistable cell

away from the depolarized membrane potential. Thus, the results from both the PDE and

125



two-cell ODE models support the argument that the depolarization block steady state is

essential to the counterintuitive positive dependence of periodic wave stability on curvature.

The results of this work give rise to several important directions for future study. First,

the bifurcation analysis in the two-cell model should be extended; as this study served as

an exploratory first step, further analysis is needed fully identify the connections between

steady states and limit cycles, thoroughly examine the period-doubling bifurcations, and

relate the full bifurcation diagrams to the simulated results. The preliminary comparison

between simulations and analysis suggests that the two align closely, and therefore that the

full bifurcation picture will provide meaningful insight into explaining the results. Second, we

observed interesting period-doubling behavior in the PDE. Our spectral analysis in the single-

domain PDE was limited to linearization around the stationary solution and identifying

bifurcations to the stability of this solution. An important future direction is to linearize the

PDE around the periodic traveling wave, and investigate the spectral properties giving rise

to the period-doubling bifurcation as well as any other bifurcations. It is also of interest,

especially noting fig. 4.6, to investigate whether both the period-change phenomena in

region 4 and region 5 are strictly period doubling, or if region 4 arises from a more gradual

period-increase bifurcation. Finally, given that our PDE simulations were limited to radially

symmetric domains, an important next step is to extend our study to ellipses and more

complex shapes to fully examine how the predictions generated by our results apply in

practice to a more realistic scenario with non-homogeneous curvature around the ischemic

region.
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M. Packer, A. J. Coats, L. Manzano, M. Böhm, D. J. van Veldhuisen, B. Andersson,

H. Wedel, T. G. von Lueder, A. S. Rigby, Å. Hjalmarson, J. Kjekshus, and J. G. Cle-
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